The Chronicles of the Chronicle Flask: 2016

2016 is limping to its painful conclusion, still tossing out last-minute nasty surprises like upturned thumb tacks in the last few metres of a marathon. But the year hasn’t been ALL bad. Some fun, and certainly interesting, things happened too. No, really, they did, honestly.

So with that in mind, let’s have a look back at 2016 for the Chronicle Flask….

January kicked off with a particularly egregious news headline in a well-known broadsheet newspaper: Sugar found in ketchup and Coke linked to breast cancer. Turns out that the sugar in question was fructose. Yes, the sugar that’s in practically everything, and certainly everything that’s come from a plant. So why did the newspaper in question choose ketchup and Coke for their headline instead of, oh, say, fruit juice or honey? Surely not just in an effort to sell a few more newspapers after the overindulgent New Year celebrations. Surely.

octarineThere was something more lighthearted to follow when IUPAC  verified the discoveries of elements 113, 115, 117 and 118. This kicked off lots of speculation about the elements’ eventual names, and the Chronicle Flask suggested that one of them should be named Octarine in honour of the late Sir Terry Pratchett. Amazingly, this suggestion really caught everyone’s imagination. It was picked up in the national press, and the associated petition got over 51 thousand signatures!

In February I wrote a post about the science of statues, following the news that a statue to commemorate Sir Terry Pratchett and his work had been approved by Salisbury City Council. Did you know that there was science in statues? Well there is, lots. Fun fact: the God of metalworking was called Hephaestus, and the Greeks placed dwarf-like statues of him near their Hearths – could this be where the fantasy trope of dwarves as blacksmiths originates?

MCl and MI are common preservatives in cosmetic products

MCl and MI are common preservatives in cosmetic products

My skeptical side returned with a vengeance in March after I read some online reviews criticising a particular shampoo for containing a substance known as methylchloroisothiazolinone. So should you be scared of your shampoo? In short, no. Not unless you have a known allergy or particularly sensitive skin. Otherwise, feel free to the pick your shampoo based on the nicest bottle, the best smell, or the forlorn hope that it will actually thicken/straighten/brighten your hair as promised, even though they never, ever, ever do.

Nature Chemistry published Another Four Bricks in the Wall in April – a piece all about the potential names of new elements, partly written by yours truly. The month also brought a sinus infection. I made the most of this opportunity by writing about the cold cure that’s 5000 years old. See how I suffer for my lovely readers? You’re welcome.

In May I weighed in on all the nonsense out there about glyphosate (and, consequently, learned how to spell and pronounce glyphosate – turns out I’d been getting it wrong for ages). Is it dangerous? Nope, not really. The evidence suggests it’s pretty harmless and certainly a lot safer than most of its alternatives.

may-facebook-postSomething else happened in May: the Chronicle Flask’s Facebook page received this message in which one of my followers told me that my post on apricot kernels had deterred his mother from consuming them. This sort of thing makes it all worthwhile.

In June the names of the new elements were announced. Sadly, but not really very surprisingly, octarine was not among them. But element 118 was named oganesson and given the symbol Og. Now, officially, this was in recognition of the work of Professor Yuri Oganessian, but I for one couldn’t help but see a different reference. Mere coincidence? Surely not.

July brought another return to skepticism. This time, baby wipes, and in particular a brand that promise to be “chemical-free”. They’re not chemical-free. Nothing is chemical-free. This is a ridiculous label which shouldn’t be allowed (and yet, inexplicably, is still in use). It’s all made worse by the fact that Water Wipes contain a ‘natural preservative’ called grapefruit seed extract which, experiments have shown, only actually acts as a preservative when it’s contaminated with synthetic substances. Yep. Turns out some of Water Wipes claims are as stinky as the stuff they’re designed to clean up.

Maria Lenk Aquatic Enter, Tuesday, Aug. 9, 2016. (AP Photo/Matt Dunham)

Maria Lenk Aquatic Enter, Tuesday, Aug. 9, 2016. (AP Photo/Matt Dunham)

August brought the Olympics, and speculation was rife about what, exactly, was causing the swimming pools to turn such strange shades of green. Of course, the Chronicle Flask knew the correct solution…

August also saw MMS and CD reared their ugly heads on social media again. CD (chlorine dioxide) is, lest we forget, a type of bleach solution which certain individuals believe autistic children should be made to drink to ‘cure’ them. Worse, they believe such children should be forced to undergo daily enemas using CD solutions. I wrote a summary page on MMS (master mineral solution) and CD, as straight-up science companion to the commentary piece I wrote in 2015.

mugsSeptember took us back to pesticides, but this time with a more lighthearted feel. Did you know that 99.99% of all the pesticides you consume are naturally-occurring? Well, you do if you regularly read this blog. The Chronicle Flask, along with MugWow, also produced a lovely mug. It’s still for sale here, if you need a late Christmas present… (and if you use the code flask15 you’ll even get a discount!)

In October, fed up with endless arguments about the definition of the word ‘chemical’ I decided to settle the matter once and for all. Kind of. And following that theme I also wrote 8 Things Everyone Gets Wong About ‘Scary’ Chemicals for WhatCulture Science.

Just in case that wasn’t enough, I also wrote a chapter of a book on the missing science of superheroes in October. Hopefully we should see it in print in 2017.

Sparklers are most dangerous once they've gone out.

Sparklers are most dangerous once they’ve gone out.

I decided to mark Fireworks Night in November by writing about glow sticks and sparklers. Which is riskier? The question may not be as straightforward as you’d imagine. This was followed by another WhatCulture Science piece, featuring some genuinely frightening substances: 10 Chemicals You Really Should Be Scared Of.

And that brings us to December, and this little summary. I hope you’ve enjoyed the blog this year – do tell your friends about it! Remember to follow @ChronicleFlask on Twitter and like fb.com/chronicleflask on Facebook – both get updated more or less daily.

Here’s wishing all my lovely readers a very Happy New Year – enjoy a drop of bubbly ethanol solution and be careful with the Armstrong’s mixture…. 

See you on the other side!

new-year-1898553_960_720

8 Things Everyone Gets Wrong About ‘Scary’ Chemicals

scaryChemicals. The word sounds a little bit scary, doesn’t it? For some it probably conjures up memories of school, and that time little Joey heated something up to “see what would happen” and you all had to evacuate the building. Which was actually good fun – what’s not to love about an unplanned fire drill during lesson time?

But for others the word has more worrying associations. What about all those lists of additives in foods, for starters? You know, the stuff that makes it all processed and bad for us. Don’t we need to get rid of all of that? And shouldn’t we be buying organic food, so we can avoid ….

….Read the rest of this article at WhatCulture Science.


This is my first article for WhatCulture Science – please do click the link and read the rest!


Like the Chronicle Flask’s Facebook page for regular updates, or follow @chronicleflask on Twitter. In need of a groovy new mug? Check out this page.

Do you really need to worry about baby wipes?

Never mind ingredients, just give me a packet that's not empty!

Never mind ingredients, just give me a packet that’s not empty!

A little while back I wrote a post about shampoo ingredients, and in passing I mentioned baby wipes. Now, these are one of those products which you’ve probably never bought if you’re not a parent, but as soon as you are you find yourself increasingly interested in them. Yes, I know, reusable ‘wipes’ are a thing. But after dealing with a nappy explosion at 2am in the morning, I’m willing to bet that more than one parent’s environmental conscience has gone in the rubbish bin along with a bag of horror they never want to see again, at least for a little while.

But which wipes to buy? The cheapest ones? The nicest-smelling ones? The fragrance-free ones? The ones with the plastic dispenser on the top that allow you to easily grab one wipe at a time? Or not, because those bulky dispensers produce yet more plastic waste? Or just whichever brand you grabbed first at the all-night supermarket at some unpleasant hour that’s too late to be night yet too early to be morning?

All of the above at one time or another, probably. However, I’m going to suggest that one thing you can stop worrying about right now is whether or not your wipes are labelled ‘chemical-free’.

As I’ve explained before, everything is made up of chemicals. By any sensible definition, water is a chemical, and thus the claim that Water Wipes® (“the world’s purest baby wipe”) are “chemical free” is simply incorrect.

These wipes are not, actually, chemical-free.

These wipes are not, actually, chemical-free.

In fact, Water Wipes® aren’t even, as you might imagine, made of some sort of non-woven fabric impregnated with plain water. No, they contain something else: grapefruit seed extract.

Well, that sounds natural, I hear you say. It does, doesn’t it? Grapefruit, that sounds fresh. Seed, well seeds are healthy, aren’t they? And the word ‘extract’ is very natural-sounding. What’s the problem?

Let’s start with what grapefruit seed extract, also called GSE, actually is. It’s made from the seeds, pulp and white membranes of grapefruit. These ingredients are ground up and a drop of glycerin is added. Glycerin, by the way, is otherwise known as glycerol, or propane-1,2,3-triol. It’s naturally-occurring – it’s one of the molecules you get when you break up fats – and it’s usually made from plants such as soybeans or palm (uh oh…), or sometimes from tallow (oh dear…) or as a byproduct of the petroleum industry (yikes! – I wonder if the manufacturers of Water Wipes® enquired about the nature of the glycerin being added to their product…?)

But anyway, back to GSE. Like all plant extracts, grapefruit seed extract is stuffed full of other chemicals that occur naturally. In particular, flavonoids, ascorbic acid (vitamin C), tocopherols, citric acid, limonoids and sterols.

citric acid synthetic vs natural

Can you tell the difference?

So… in short, not chemical-free at all. Not even a bit. The problem here is that, in marketing, the term ‘chemical-free’ is used to mean something that only contains ingredients from ‘natural’ sources. But this is meaningless. Take citric acid, for example. (E330 by the way – E numbers don’t mean something’s deadly, either. In fact, quite the opposite.) There’s no difference between citric acid extracted from a grapefruit and citric acid prepared in a laboratory. They both have exactly the same atoms and the same molecular formula and structure. They both react in the same way.

They’d both be classified as corrosive in high concentrations, and irritant in low concentrations. This isn’t even “might” cause irritation. This is absolutely, definitely, positively WILL cause irritation.

Wait, hang on a minute! There’s a potentially corrosive chemical in the ‘chemical-free’ baby wipes, and unsuspecting parents are putting it on their baby’s skin?!

Yep.

But before anyone runs off to write the next Daily Mail headline, let’s be clear. It’s really not going to burn, alien acid-style, through a new baby’s skin. It’s not even going to slightly redden a baby’s skin, because the quantity is so miniscule that it quite literally has no corrosive properties at all. It’s the same logic as in the old adage that “the dose makes the poison“.

This is where we, as consumers, ought to stop and think. If a fraction of a drop of citric acid is harmless then…. perhaps that small quantity of PEG 40 hydrogenated castor oil or sodium benzoate in most (considerably less expensive, I’m just saying) other brands of baby wipes isn’t as awful as we thought, either…

Indeed, it’s not. But what sodium benzoate in particular IS, is a very effective preservative.

Grapefruit seed extract is marketed as a natural preservative, but studies haven't backed up this claim.

Grapefruit seed extract is allegedly a natural preservative, but studies haven’t backed up this claim.

Why does this matter? Well, without some sort of preservative baby wipes, which sit in a moist environment for weeks or months or even years, might start to grow mould and other nasties. You simply can’t risk selling packets of water-soaked fabric, at a premium price, without any preservative at all, because one day someone might open one of those packets and find it full of mould. At which point they would, naturally, take a photo and post it all over social media. Dis-as-ter.

This is why Water Wipes® include grapefruit seed extract, because it’s a natural preservative. Except…

When researchers studied GSE and its antimicrobial properties they found that most of their samples were contaminated with benzethonium chloride, a synthetic preservative, and some were contaminated with other preservatives, some of which really weren’t very safe at all. And here’s the kicker, the samples that weren’t contaminated had no antimicrobial properties.

In other words, either your ‘natural’ grapefruit seed extract is a preservative because it’s contaminated with synthetic preservatives, or it’s not a preservative at all.

If you're worried, just use cotton wool pads and water.

You can always use cotton wool pads and water.

If you’re worried that baby wipes may be irritating your baby’s skin – I’m not claiming this never happens – then the best, and cheapest, thing to do would be to simply follow the NHS guidelines and use cotton wool and water. It’s actually easier and less messy than you might imagine – packets of flat, cosmetic cotton wool pads are readily available (and pretty cheap). Simply dip one in some clean water, wipe and throw it away. It’s really no more difficult or messy than wipes.

But if you’re choosing a particular brand of wipes on the basis that they’re “chemical-free”, despite the fact that other types have never actually caused irritation, you can stop. Really. Buy the cheap ones. Or the nicest-smelling ones, or the ones that come out of the packet most easily. Because NONE of them are chemical-free, and it’s really not a problem.


Follow The Chronical Flask on Facebook at fb.com/chronicleflask and Twitter as @chronicleflask for regular updates.

 

 

 

The Chronicle Flask’s festive chemistry quiz!

Tis the season to be jolly! And also for lots of blog posts and articles about the science of christmas, like this one, and this one, and this one, and even this one (which is from last year, but it’s jolly good).

But here’s the question: have you been paying attention? Well, have you? Time to find out with The Chronicle Flask’s festive quiz! I haven’t figured out how to make this interactive. You’ll have to, I don’t know, use a pen and paper or something.

Arbol_de_navidad_con_adornos_de_personajesQuestion 1)
Which scientist invented a chemical test that can be used to coat the inside of baubles with silver?
a) Bernhard Tollens
b) Karl Möbius
c) Emil Erlenmeyer

Question 2)
Reindeer eat moss which contains arachidonic acid… but why is that beneficial to them?
a) a laxative
b) an anti-freeze
c) a spider repellant

1280px-ChristmasCrackers_2Question 3)
Which chemical makes crackers and party poppers go crack?
a) gunpowder
b) silver fulminate
c) nitrogen triiodide

640px-Glass_of_champagneQuestion 4)
We all like a glass of champagne at this time of year, but what’s in the bubbles?
a) carbon dioxide
b) nitrogen
c) oxgyen

Question 5)
What’s the key ingredient in those lovely bath salts you bought for your grandma?
a) calcium carbonate
b) magnesium sulfate
c) citric acid

The Bird - 2007Question 6)
Which chemical reaction is responsible for both perfectly browned biscuits and crispy, golden turkey?
a) Maillard reaction
b) Hodge reaction
c) Caramel reaction

Question 7)
Sucrose-rodmodelWhere are you most likely to find this molecule at this time of year?
a) in a roast beef joint
b) in the wrapping paper
c) in the christmas cake

Question 8)
Let it snow, let it snow, let it snow… but which fact about (pure) water is true?
a) It glows when exposed to ultraviolet light
b) It expands as it freezes
c) It’s a good conductor of electricity

Ethanol-3D-ballsQuestion 9)
Where are you likely to find this molecule on New Year’s Eve?
a) in a champagne bottle
b) in the party poppers
c) in the ‘first foot’ coal

OperaSydney-Fuegos2006-342289398Question 10)
Who doesn’t love a firework or two on New Years Eve?  But which element is most commonly used to produce the colour green?
a) magnesium
b) sodium
c) barium

(Answers below…)

1a) Bernhard Tollens (but his science teacher was Karl Möbius).
2b) It’s a natural anti-freeze.
3b) Silver fulminate (it always surprises me how many people guess gunpowder. That would be exciting).
4a) carbon dioxide.
5b) magnesium sulfate which, funnily enough, also causes ‘hard’ water.
6a) the Maillard reaction, although Hodge did establish the mechanism.
7c) In the cake – it’s sucrose (table sugar).
8b) it expands as it freezes and is thus less dense than liquid water (which is why ice floats). We take this for granted, but most things contract (and become more dense) as they turn from liquid to solid. You should be grateful – live probably wouldn’t have evolved without this peculiar behaviour.
9a) In the champagne – it’s ethanol (or ‘alcohol’ in everyday parlance).
10c) barium – copper produces green flames too, but barium salts are more commonly used in fireworks.

So how did you do?
Less than 4: D, for deuterium. It’s heavy hydrogen and it’s used to slow things down. Enough said.
4-6: You get a C, by which I mean carbon. Have another slice of coal.
7-8: You’ve clearly been paying attention. B for boring, I mean boron.
9-10: Au-ren’t you clever? Chemistry champion!

Happy New Year everyone! 🙂

Baffling gases

The benefits of nitrogen tyre inflationToday I had to pay a scary amount of money for new car tyres. And, in yet more evidence that chemistry permeates everywhere, I found this amazing sign in the garage.

I studied it at some length. The diagram on the right particularly fascinated me. They’ve helpfully included a key, which seems to suggest that the peculiarly square-shaped ‘tyre’, labelled as being filled with compressed air, only contains particles of nitrogen vs compressed air signoxygen, water (and water vapour, because ‘water’ isn’t a broad enough label apparently). The other, nitrogen-filled, one appears to contain oxygen, water (and water vapour) and nitrogen. As well as some mysterious green and red circling arrows.

Hm.

I can’t quite get my head around it. Someone drew this, and sent it to printers, and presumably it’s been displayed in more than one reception area (I’m deliberately not naming the specific garage, since the staff there were nice and helpful and gave me a good price really, and I’m sure they had nothing whatsoever to do with the sign beyond being told by Head Office to put it on the wall).

Did no one think to check it with, well, anyone? It’s almost as bonkers wrong as the American school sign advertising ‘leteracy night’.

Ok, so I’m not a car mechanic. My experience in that area is limited to occasionally topping up my own screenwash and once watching my Dad change some spark plugs. But I’m pretty sure that compressed air is, well, compressed air. As the sign itself makes clear, air is about 79% nitrogen and 21% oxygen (the numbers vary, but that bit, at least, is more or less right). Therefore, first problem, if you fill a tyre with compressed air you are by definition filling it with nearly 80% nitrogen.

In fact, I don’t think I’d want to drive a car with tyres which had been filled with pure oxygen and a bit of water, as the key suggests. Oxygen is a jolly effective oxidising agent. Tyres may not be the most flammable things in the world, but I reckon there’s a significant chance that your hot wheels would become a little more literal than you might like.

Moving on, in the round-ish tyre diagram there appears to be water, oxygen and nitrogen. Call me naive, but if you tell me you’re filling my tyres with nitrogen I’m going to assume it’s pure nitrogen. Whereas what you have there is (I’m so sad I counted and worked it out) 40% nitrogen, 27% water 33% oxygen. I dunno what that particular mixture is, but it’s not air and it’s definitely not pure nitrogen.

And then there are the captions underneath: “Undesirable components of the air are removed when the tyre is filled with nitrogen”.  Well not according to that diagram, because there’s still water and oxygen in it…

And, “nitrogen is the only inflation medium developed solely for the use of pneumatic tyre inflation”. What about compressed air then? Doesn’t that count as an ‘inflation medium’?

And, “maintains the correct tyre pressure for longer”. Well, actually I’m not sure about this one (there’s an interesting article here expressing some skepticism though). The Formula One website says that they do indeed fill racing tyres with “a special nitrogen-rich air mixture, designed to minimise variations in tyre pressure with temperature. The mixture also retains the pressure longer than normal air would.” The internet tells me Red Bull alone invested over $100 million in 2012, a significant chunk of which would necessarily have to be research and development. If anyone knows about the best stuff to fill tyres with, it’s Formula One.

But, there is a bit of a difference between cars that are designed to routinely get up to 200 mph and tyres that are designed to cope with temperatures comfortably over 100 oC, and your household runaround that averages 35-ish miles per hour. Let’s say I’m not convinced we’re comparing apples with apples here.

I also don’t understand those blue arrows coming out of the squarish tyre (why IS it that shape anyway?) They seem to suggest that water is escaping. But if so, why is it escaping from one tyre and not the other? And how permeable is rubber to water anyway? (Answer: not very, otherwise the welly boot would have been a bit pointless really.)

The one thing I do accept is that water might, possibly, have a small effect on tyre pressure. Water has an annoying habit of changing state at everyday temperatures. Just 1 millilitre of liquid water occupies over 1300 millilitres when it turns into a gas at atmospheric pressure and 25 oC. If it’s hotter (which it probably would be, if it had suddenly turned into gaseous water) it occupies even more space. Of course it’s more complicated than this because tyres aren’t at atmospheric pressure, but the point stands: if there’s water in your tyres the pressure would fluctuate a bit as they warm up. This’ll happen anyway, since in general gases expand as they warm up, but water could make the difference more significant.

But I checked, when compressed air is produced they take out most of the water. Most of it condenses when the air is compressed, and the condensate is simply removed. Then they use an air dryer and a filter as well. So I dispute the idea that there’s a lot of water in standard compressed air in the first place. (It has since been pointed out – see comments – that a lot of garages have their own air compressors, and that although they’re supposed to dry the air they may not do it very effectively, so there could be a fair bit of water in there, although there shouldn’t be…)

Anyway, my musings over gases were interrupted by having to pay the terribly big bill. It did seem like a lot for about 50 kg of rubber, but I’m assured that tyres with the correct depth of ridgy bits are quite important. They told me they filled them up with nitrogen for free.