Lovely lollipops: the chemistry of sugary things

20th July is National Lollipop Day!

Today, July 20th, is apparently national lollipop day in the United States, and general news is… *waves hands* so it seems like a good excuse to write something with lots of pictures of brightly coloured sweets, right? Plus, sugar!

The idea of putting something sugary on a stick to hold and eat is an ancient one. The very earliest humans probably used sticks to collect honey from beehives. Later, the Chinese, Egyptians and people from the Middle East dipped fruits and nuts in honey and used sticks to make them easier to eat.

In the 17th century, boiled sugar sweets were made in England and, again, sticks inserted to make eating easier. This may be where the name “lollipop” originates, since “lolly” is a dialect word for tongue. Later, in the American Civil War era (early 1860s), some sources say hard candy was put on the tips of pencils for children. In 1931 an American named George Smith started making hard candies on sticks, and trademarked the name lollipop — but he reportedly took the name from a racehorse named “Lolly Pop”.

Table sugar is sucrose

Enough history, let’s get to the chemistry! Lollipops are made of sugar, with added colours and flavours. I’ve talked about sugar before, and it’s always worth remembering that we tend to use the word rather loosely in everyday speech.

There’s more than one type of sugar: in particular, the three that are probably most familiar are glucose, fructose and sucrose. Glucose is a simple sugar, and the one you might remember from photosynthesis and respiration equations. It’s essential for life, and you quickly run into serious trouble if your blood glucose levels drop too low (just ask a diabetic).

Like glucose, fructose is a monosaccharide (the simplest form of sugar), and is often called “fruit sugar” because, guess what, it’s common in fruits. Sucrose is what we know as “table sugar” and is a disaccharide, made up of a unit of glucose joined to a unit of fructose. In the body, sucrose is broken up into glucose and fructose.

Rock candy is made from sucrose but, unlike in most lollipops and hard candy, the sugar is allowed to form large crystals

The primary ingredient in lollipops is usually sucrose, which can be persuaded (more in a minute) to set nicely to produce a hard, shiny surface. However, commercial lollipops often also include corn syrup, or glucose syrup, which contains oligosaccharides: larger sugar molecules made from a number of simple sugar molecules joined together. Typically, as the name “glucose syrup” might suggest, these molecules contain units of glucose.

It’s worth mentioning here that corn syrup/glucose syrup isn’t the same as “high fructose corn syrup” or HFCS, in which the glucose molecules have been converted into fructose. This product is cheap, sweet and commercially easy to use, but it’s also controversial. Excessive consumption has been linked to obesity and non-alcoholic fatty liver disease, although the actual evidence is weak: a systematic review in 2014 concluded that there was little evidence it was worse than other forms of sugar. It’s really a problem of quantity: it’s easy and cheap for food manufacturers to throw HFCS into foods and drinks, and of course it tastes delicious, so as a consequence consumers end up eating too much of the stuff. In short: more water and fruit, less cake and fizzy drinks.

But having done the obligatory “eat healthily” thing, one lollipop isn’t going to hurt, is it? So back to that…

Fudge, perhaps surprisingly, contains the crystalline form of sugar

When it cools, sugar forms two different types of solid: crystalline and glassy amorphous (sometimes described as ‘amorphous solid’). Now, you might imagine that sugar as a crystalline solid is found in hard sweets/candies, but, no — it mostly turns up in soft things like fudge and fondant, which contain lots of very tiny crystals, giving an ever-so slightly granular texture. (An exception is rock candy, where the sugar is encouraged to form large crystals.)

The glassy amorphous form of sugar, on the other hand, can be literally like glass: hard, brittle, and transparent. In fact, “sugar glass” has in the past been used to make windows, bottles and so on for special effects in film and television, because it’s much less likely to cause injury than “real” glass. However, it’s very fragile and hygroscopic (meaning it absorbs water, causing it to soften over time) so these days it’s largely been replaced by synthetic resins.

Honey can be used as an inhibitor, to prevent crystallisation

The glassy amorphous form of sugar is achieved by starting with a 50% sugar solution which also contains an inhibitor, to prevent crystals forming spontaneously. Common inhibitors are the corn syrup I mentioned earlier, or cream of tartar (potassium bitartrate), honey or butter.

Exactly which you use depends on the recipe, but they all do essentially the same thing, namely, get in the way of the glucose molecules and prevent them ordering themselves into a regular (crystalline) structure. The mixture is heated to a high temperature (about 155 oC) until almost all the water evaporates — the final candy will only have about 1-2% water — and then cooled until glass transition occurs.

At the glass transition point, the sugar mixture becomes solid.

This is the clever bit, and only happens if crystallisation is inhibited (else crystals form instead). Glass transition happens around 100-150 oC below the melting point of the pure substance. For example, the melting point of pure sucrose is 186 oC, but it undergoes glass transition at around 60 oC.

Glass transition is a reversible change, which we might (if I didn’t generally dislike the concept) call a physical change. It’s a change of phase, where the sugar mixture changes from liquid to solid, but it’s different from crystallisation, because instead of the molecules becoming more ordered, they simply ‘freeze’ in their random, liquid positions. (It is, for the record, annoyingly difficult to show this in diagram form.)

Amorphous solid structures are sometimes called “supercooled liquids”. This isn’t wrong, but personally I think it’s unhelpful (and can lead to nonsense about glass flowing very slowly over time). Once cooled and set, glass, whether window glass or sugar glass, is absolutely not a liquid; it’s a solid.

Of course, to make lollipops, all sorts of colours and flavours are added to the mixture as well, and sometimes more than one mixture is used to create intricate, layered effects. There are even medicinal lollipops which contain, for example, the powerful painkiller fentanyl — the idea being that the patient can administer the dose gradually as needed.

Which brings me to the end. Happy National Lollipop Day! My favourites are Chupa Chups — if you’ve enjoyed this, how about popping over to Ko-fi so I can stock up? And if you’ve been eating sweets, do remember to clean your teeth!


If you’re studying from home, have you got your Pocket Chemist yet? Why not grab one? It’s a hugely useful tool, and by buying one you’ll be supporting this site – it’s win-win!

Like the Chronicle Flask’s Facebook page for regular updates, or follow @chronicleflask on Twitter. Content is © Kat Day 2020. You may share or link to anything here, but you must reference this site if you do. If you enjoy reading my blog, and especially if you’re using information you’ve found here to write a piece for which you will be paid, please consider buying me a coffee through Ko-fi using the button below.
Buy Me a Coffee at ko-fi.com

Want something non-sciency to distract you from, well, everything? Why not check out my fiction blog: the fiction phial.

Practical Pyrotechnics (Happy Birthday, Good Omens!)

The novel, Good Omens, was first published on 10th May 1990.

Today (10th May*) is the thirtieth anniversary of the release of the book Good Omens, which is an old favourite of mine, and one I’ve found science-based excuses to write about before. In honour of the day, I’m going to do it again—but this time I’m going to talk about fire.

Fire plays an important role in both the book and the acclaimed television adaptation. Of course, fire is rather easier to do in a novel, since reading words like “fire” and “flames” are generally quite safe. In TV land, however, it’s a bit trickier. In particular (spoiler alert), at the start of episode five, the bookshop owned by the angel Aziraphale is burning when Crowley arrives and walks in. Crowley, after all, is a demon. From Hell. Fire can’t hurt him.

Except, of course, he’s actually the lovely David Tennant, who is a very much not-fireproof human being. Which poses a few questions: did the film crew really set the bookshop set on fire? Did they really make David Tennant walk into a burning building? How is that done safely? And what did they actually burn?

It turns out that they did, in fact, burn down the bookshop set. According to The Nice and Accurate Good Omens TV Companion, director Douglas Mackinnon “wanted a real fire” and “there were thousands of books, tapestries and beautiful grandfather clocks inside the shop that were real.”

Actual books were harmed in the making of Good Omens (photo used with permission).

Which… argh. Actual books. In flames. I might be a bit traumatised. Give me a moment.

Anyway. The thing is, if you’ve ever set fire to paper you’ll know it’s not very controllable. You can’t just burn books and achieve consistent and, more importantly, safe, flames. The Good Omens TV Companion goes on to explain that the set was rigged with gas lines and flame bars. It doesn’t say what the fuel was, but the probable candidate is propane.

This is where we get to the chemistry. Propane is a hydrocarbon—a molecule made of hydrogen and carbon atoms—and the “prop” part of its name tells us that it contains three carbon atoms. The “ane” part tells us it’s an alkane, and from that, handily, we can work out its formula without having to do anything so mundane as look it up, because the formulas of alkanes follow a rule: CnH2n+2. In other words, take the number of carbons, multiply it by two, add two, and you get the number of hydrogen atoms. This gives us three carbons and eight hydrogens: C3H8.

Propane’s boiling point is -42 oC, meaning it’s a gas at room temperature. You may be familiar with propane canisters which slosh when moved, suggesting liquid, and that’s because the propane is under pressure. The only real difference between a gas and a liquid is the amount of space between the individual particles. In a liquid, the particles are mostly touching one another, while in a gas there are large spaces between them. If you take a gas and squash it into a small volume, so that the particles are forced to touch, it becomes a liquid.

Propane is stored in pressurised canisters (photo used with permission)

But once the propane is allowed to escape from the confines of a pressurised container, at room temperature, its molecules spread out once again, into a gas.

The expansion is BIG. Theoretically, at room temperature, one litre of propane liquid (with a density of 493 g/litre) will expand to occupy roughly 270 litres of space. But, of course, the space it’s expanding into also contains air, so the volume of flammable mixture—approximately 5% propane to 95% air—is actually much higher.

Gases burn faster than either liquids or gases. We know this, of course: it only takes a brief spark to light the gas burner on the cooker hob, for example, but you’d struggle to light a liquid fuel with the same spark (unless it was warmed, and therefore starting to vaporise). The reason is those big gaps between molecules: each molecule in a gas is free, none are “buried” in the middle of a volume of liquid (or solid), so they can all mingle freely with oxygen (needed for combustion) and they all “feel” the heat source and become excited more easily.

Propane is a hydrocarbon with three carbon atoms.

Apart from being a gas at room temperature, propane is also chemically very safe in that it’s non-toxic and non-carcinogenic. It’s also colourless and odourless—although small amounts of additives such as the eggy-smelling ethyl mercaptan (ethanethiol) are sometimes added as a safety precaution, to make leaks more noticeable.

Mechanically there are more hazards. There’s a significant temperature drop when a pressurised liquid expands into a gas. The simplest way to think about this is to think of temperature as the energy of all the particles in a substance divided by its volume. If the volume increases while the number of particles stays the same, the energy is spread out a lot more, so the temperature drops. Potentially, a sudden release of too much gas near a person could severely chill their skin, and even cause frostbite. Plus, of course, although propane isn’t toxic, if it displaces oxygen it could cause asphyxiation, and it’s heavier than air, so it tends to accumulate in the bottom part of a room—precisely where people are trying to do pesky things like breathe.

Yellow flames, and smoke, are a sign of incomplete combustion (photo used with permission).

Then there’s the issue of complete combustion. Generally, when hydrocarbons burn they produce carbon dioxide and water as products, neither of which are too much of a problem for nearby humans (up to a point). However, when there’s not enough oxygen—say, because the fire is inside a building—other products form, in particular carbon monoxide, which is very toxic, and carbon particles, which make a terrible, terrible mess.

I mentioned earlier that a flammable mixture is about 95% air to 5% propane, and this is why. In fact, it’s even more precise than that: for propane to burn cleanly it should be 4.2% propane to 95.8% air. In industry terminology, if there’s not enough propane it produces a “lean” burn, where flames lift from the burner and tend to go out. If there’s more propane (and thus not enough oxygen) it’s called a “rich” burn, which produces large, yellow flames, soot, and the dreaded carbon monoxide.

They did burn the bookshop. But it’s OKAY, it was restored again at the end! (Photo used with permission.)

You might, of course, want a certain amount of yellow flame and smoke, to achieve the right look, but the whole thing needs to be carefully controlled to make sure no one is in danger. It’s all manageable with the use of properly checked, monitored and maintained equipment, but you can imagine that a big effect like the bookshop fire needs a very experienced professional to oversee everything.

For Good Omens, that was Danny Hargreaves (of Real SFX), who’s worked on all kinds of projects from War of the Worlds to Doctor Who. As he says in the Good Omens TV Companion, “everything is under control [but] we took it right to [the] limit.” At one point, he says, he turned off gas lines sooner rather than later and, when director Douglas Mackinnon asked why, had to explain that the roof was about to catch fire.

So, yes, they burned the bookshop set. But it’s all right, everyone. It’s all right. Because (another spoiler) thanks to the powers of Adam Young, everything was restored again afterwards. Phew. All the books were saved. Shh.


*Funnily enough, everyone thought the anniversary was 1st of May. Including the whole Good Omens team. So they made a brilliant lockdown video** to mark the occasion and celebrate. And then it turned out it was actually the 10th. Just an ordinary cock-up, as Crowley would say.

**Which proves the bookshop, with all its books, was fully restored, doesn’t it? Told you.


If you’re studying from home, have you got your Pocket Chemist yet? Why not grab one? It’s a hugely useful tool, and by buying one you’ll be supporting this site – it’s win-win!

Want something non-sciency to distract you? Why not check out my fiction blog: the fiction phial. There are loads of short stories, and even (recently) a couple of poems. Enjoy!

Like the Chronicle Flask’s Facebook page for regular updates, or follow @chronicleflask on Twitter. Content is © Kat Day 2020. You may share or link to anything here, but you must reference this site if you do. If you enjoy reading my blog, please consider buying me a coffee through Ko-fi using the button below.
Buy Me a Coffee at ko-fi.com

The UK’s Unlikely System of Units

The novel Good Omens was first published in 1990. And this is my original copy.

Unless you’ve been asleep for the last few months (if so, are you a snake, by any chance….?) you will have noticed that there’s recently been a very popular television adaptation of the much-loved book by Terry Pratchett and Neil Gaiman: Good Omens.

I have always loved this book, and I love the TV show even more. Obsessed? Erm. Anyway. Can I wring a science-themed post for my blog out of a story about a demon and an angel saving the world from Armageddon? Of course I can.

Here goes. There’s a moment in the second episode of the TV adaptation* when the demon, Crowley, is driving his Bentley very, very fast, and the angel, Aziriphale, says: “You can’t do ninety miles an hour in central London!”

This caused a bit of confusion for some non-British viewers§. Not the idea that you can’t, or at least shouldn’t, drive extremely fast in a built-up area, but rather the fact that Britain is a European country, isn’t it? At least, for the moment. Don’t the Europeans use the metric system? Shouldn’t he have said one hundred and forty-five kilometres per hour?

So you thought Brits used the metric system? Haha.

I mean, okay, we do. Scientists in particular are quite keen on it. But we also use imperial units really quite a lot. And coincidently, this all arose just after the politician Jacob Rees-Mogg issued a style guide to his staff declaring that they must “use imperial measurements” — which at first sounds typically Victorian of Rees-Mogg, but actually… if your aim is to at least try to be consistent, he might, just might, have a point…

Allow me to try to explain.

Firstly, a little clarification: the “metric system” is an internationally-recognised decimalised system of measurement, that is, a system where units are related by powers of ten. I stress this because “metric” and “decimal” do not mean quite the same thing, which is relevant when it comes to money. The metric system takes base measurements — kilograms, metres and so on — and says that all versions of those measurements can only be connected by powers of ten, and must not introduce new conversion factors. So, grams (1000th of a kilogram) and tonnes (1000 kilograms) are both metric, but a pound (0.454 of a kilogram) is not. Scientists know this as the SI system of measurements. Okay? Right. Let’s get on to the amusing cocktail of units the British have to cope with in their every day lives…

Britain loves inches.

Length
The length of small-ish objects is measured in centimetres and millimetres. Sometimes. Except the diameter of pizzas, the sides of photos and photo frames, and the diagonal of laptop screens and televisions — all of which are almost always given in inches. Screws, as in woodscrews, are often given in  fractions of inches. Let’s not get into jewellery, for that way madness lies.

Longer objects are measured in metres and centimetres, except for the height of people, which is almost always quoted in feet and inches. Chippies (that is carpenters, not people that cook fish and chips — keep up) tend to colloquially use feet and inches for planks of wood. For example, “I need a bit of six by nine” — meaning a piece of wood 6 feet long and 9 inches thick.

What do you mean, how do you know which one is 6 and which one is 9? You’d hardly have a 9 ft piece of wood that was only 6 inches thick, would you?

People do sometimes use metres for short walking distances, e.g. “it’s fifty metres to the shops”, however Brits also like to use yards, a yard being 3 feet. But that’s okay, because a yard is close enough to a metre as to make little difference to a casual walking estimate, so they’re pretty interchangeable.

Marathons are measured in miles. Shorter road races use kilometres.

The sorts of distances involved in lengthy travel are always measured in miles. The distance from Oxford the city to Oxford Street in London, for example, is about 55 miles. No British person would ever describe this as 88.5 km. Speed, as we saw in Good Omens, is thusly described in miles per hour (mph). For the record, the speed limit in a built-up area such as Oxford Street would normally be 30 mph, or sometimes (more and more frequently) 20 mph. Crowley was indeed driving ridiculously fast, but then, he has demonic magic to help him avoid both pedestrians and police.

Miles are also used for marathons. However, not for shorter running races, which are often described as “5k” or “10k” meaning, obviously, 5 kilometres or 10 kilometres. The cynics may wonder whether this is because 5 kilometres sounds longer than 3 miles, but I’m sure runners aren’t concerned about such vanities.

Is all of that clear? Okay, let’s move on…

Weight
Weight (physicists: I mean mass, yes, you’re very clever, shhh now) of people is measured in stones and pounds (there are 14 pounds in a stone). Except for babies, which are little and are therefore measured in pounds, because everyone knows a baby ought to weigh somewhere in the region of 7 pounds or so, and if you quote a baby weight in kg, Brits have no idea whether to gasp, coo, or wince sympathetically.

The weight of food is mostly measured in kilograms and grams (or possibly grammes; it’s essentially the same thing) these days, although a lot of people still favour pounds and ounces. This leads to oddities, such cake recipes which call for 225 g of butter (half a pound). There are, by the way, 16 ounces in a pound, because it would be far too easy if it were consistent with the pounds/stones thing, wouldn’t it. Oh, and Brits have quarter pounder beefburgers in restaurants — none of that ‘Royale with cheese‘ business for us, thanks.

Larger weights are mostly quoted in tonnes, because that’s easy, but sometimes we use tons as well, which has the added amusement of sounding exactly the same when you say it out loud. 1 tonne is about 1.1 tons, so it’s not too much of a problem unless you’re planning a really big building project. Very large amounts are sometimes given in hundredweight, which sounds metric, doesn’t it? It’s not. A hundredweight is 50.8 kg, or 112 pounds. Did you think it would be 100? Yes, well, there are reasons.

Once again, let’s not get into jewellery. If we start on carats we’ll be here all day.

Beer, blood and milk are measured in pints.

Volume
Small volumes of liquids tend to be measured in millilitres or (particularly for wine) centilitres. The exceptions are beer, blood and milk — which are given in pints. Wandering into a British pub and asking for half a litre of beer is guaranteed to cause everyone to stop what they’re doing and stare at you. As will asking for pint of blood, for different reasons.

Larger volumes are measured in litres. We’ve mostly given up on gallons, now that all the fuel stations quote their prices in pence per litre because it looks cheaper that way.

Chemists like to be awkward, though, and use cubic centimetres — written cm3 or occasionally cc just for fun — for small volumes of liquids, and dm3 (cubic decimetres) for litres. 1 cm3 is 1 ml and 1 dm3 is 1 litre, so there’s really no reason for any of this other than to confuse students.

Temperature
Temperatures are mostly quoted in Celsius (aka centigrade, well, more-or-less), and most Brits these days have a fairly good feel for that scale. But Fahrenheit still gets rolled out when either a person or the air gets hot. A midsummer’s day might reach ‘100 degrees’ (that is, a little under 38 oC) and someone with a fever might also be described as ‘having a temperature of over a hundred’. Once it gets chillier, however, we’re firmly back to Celsius, because ‘minus five’ sounds a lot more dramatic than 23 oF.

In case you’re wondering, no, I did not choose this particular picture of a thermometer by accident.

In case you thought you were on safe ground here, don’t forget there’s also Kelvin (where 0 oC = 273 K) which is the SI unit of temperature and very popular with physicists. And, if you’re cooking, the mysterious ‘gas mark‘ — which is more-or-less unique the U.K. and which is based on some sort of occult formula. (Gas mark 6 is about 200 oC or 400 38 oF.)

Energy
Energy is measured in Joules. Except when it comes to food, where it’s measured in calories. Actually, kilocalories, but everyone just calls them calories. There’s meant to be a capital C to help tell the difference, but no one ever remembers. This is all fine.

Pressure
Are you sure you want to go here? Okay. FINE.

Tyre pressures are quoted in pounds per square inch, that is, PSI. Most British car owners can probably tell you roughly what their tyre pressures ought to be in PSI, even if (having learned metric at school) they have a somewhat shaky grasp of what either inches or pounds are.

Atmospheric pressures are usually quoted in atmospheres, because everyone knows what that means (sea level is one atmosphere, give or take). Of course, that’s not the SI unit, which is Pascals: 1 atmosphere is 101,325 Pascals, which is a bit unwieldy, so scientists often use bars, where 1 bar is 100,000 Pascals, and thus 1 atmosphere is more-or-less 1 bar, which, for once, is sort of helpful (no, really).

Blood pressure is usually quoted in mmHg

But then there’s also Torr, which arises from the historical practice of using mercury to measure pressure. 760 Torr is 1 atmosphere, while 1 Torr is 133.32 Pascals. Blood pressure, of course, was traditionally measured with a mercury sphygmomanometer, but just in case you thought you were on top of this, 1 Torr is nearly, but not quite, the same as the measurement in that case, which is mmHg, 1 of which is equal to 1.000000142466321 Torr.

Money
British money is decimal (but not metric, for the reasons described back at the start there), but only became so in 1971. If Rees-Mogg has his way I’m sure we’ll be back to pounds, shilling and pence before we know it.

It’s all your fault, isn’t it, Crowley?

In summary….
Since no one in this country is going to give up miles any time soon, if you want to be consistent about units it makes a certain kind of sense to insist on sticking to imperial, I suppose. As much sense as imperial measurements make anyway, which is not much.

You do have to wonder how we ended up with such a confusing mixture of measurements. It’s almost… demonic….


* Page 51 of the original print edition, second line up from the bottom. Obsessed? No idea what you mean.
§ And possibly non-British readers of the book in the 1990s, but Twitter didn’t exist then, so any puzlement went largely unnoticed. It was a quieter time.
would# you? I don’t bloody know. Apparently it’s obvious.
# or, indeed, wood.


Escape Artists Podcasts are brilliant and you should download and listen.

Would you like to listen to the lovely Alasdair Stuart and me natter on about how utterly brilliant Good Omens is, and all the clever little things we spotted in the show for about an hour or so? Of course you would! It’s part of the premium content bucket at the EA Podcasts Patreon. Please do consider supporting Escape Artists podcasts; they produce truly brilliant fiction podcasts on a weekly basis. If you’ve never heard of them (where have you been?) why not subscribe to their free podcasts: Podcastle (fantasy), Pseudopod (horror), Escape Pod (science fiction) and Cast of Wonders (young adult).


Like the Chronicle Flask’s Facebook page for regular updates, or follow @chronicleflask on Twitter. Content is © Kat Day 2019. You may share or link to anything here, but you must reference this site if you do. If you enjoy reading my blog, please consider buying me a coffee through Ko-fi using the button below.
Buy Me a Coffee at ko-fi.com

In the fridge or on the windowsill: where’s the best place to keep tomatoes?

Fresh fruit and vegetables are great, but where’s the best place to store them?

I’ve mentioned before that my Dad is a professional plant-wrangler (if you’ve never read the electric daisies post, do go and have a look – it’s a little-read favourite) and he often brings me home-grown fruit and vegetables.

What follows is an inevitable disagreement about storage, specifically, my habit of putting everything in the fridge.

In my defence, modern houses rarely have pantries (boo) and we don’t even have a garage. We do have a shed, but it’s at the bottom of our poorly-lit, somewhat muddy garden. Do I want to traipse out there on a cold, dark, autumn evening? No, I do not. So the fabled “cool, dark place” is a bit of problem. My fridge is cool and dark, I have argued, but here’s the thing – turns out, it’s too cool. And quite probably too dark.

This I have learned from the botanist James Wong (@botanygeek on Twitter), whose talk I attended on Monday this week at the Mathematical Institute in Oxford. James, it turns out, had a rather similar argument with his Mum, particularly regarding tomatoes.

We should’ve listened to out parents, because they were right. A lot of fruit and vegetables really are better stored outside of the fridge, and for tomatoes in particular “better” actually means “more nutritious”.

Lycopene is a very long molecule with lots of double C=C bonds.

Tomatoes, James explained, contain a lot of a chemical called lycopene. It’s a carotene pigment, and it’s what gives tomatoes their red colour.

Lycopene has lots of double bonds between its carbon atoms which form something chemists call a conjugated system. This has some rather cool properties, one of which is an ability to absorb certain wavelengths of light. Lycopene is especially good at absorbing blue and green wavelengths, leaving our eyes to detect the red light that’s left.

Lycopene absorbs blue and green light, which is why tomatoes appear red.

Tomatoes and lycopene also seem to have a lot of health benefits. There’s some evidence that lycopene might reduce the risk of prostate and other cancers. It also appears to reduce the risk of stroke, and eating tomato concentrate might even help to protect your skin from sun damage (don’t get any ideas, you still need sunblock). Admittedly the evidence is currently a bit shaky – it’s a case of “more research is needed” – but even if it turns out to that the causative relationship isn’t terribly strong, tomatoes are still a really good source of fibre and vitamins A, C and E. Plus, you know, they taste yummy!

But back to the fridge. Surely they will keep longer in the fridge, and the low temperatures will help to preserve the nutrients? Isn’t that how it works?

Well, no. As James explained, once tomatoes are severed from the plant they have exactly one purpose: to get eaten. The reason, from the plant’s point of view, is that the critter which eats them will hopefully wander off and – ahem – eliminate the tomato seeds at a later time, somewhere away from the parent plant. This spreads the seeds far and wide, allowing little baby tomato plants to grow in a nice, open space with lots of water and sun.

For this reason once the tomato fruit falls, or is cut, from the tomato plant it doesn’t just sit there doing nothing. No, it carries on producing lycopene. Or rather, it does if the temperature is above about 10 oC. Below that temperature (as in a fridge), everything more or less stops. But, leave a tomato at room temperature and lycopene levels increase significantly. Plus, the tomato pumps out extra volatile compounds – both as an insect repellant and to attract animals which might usefully eat it – which means… yes: room temperature tomatoes really do smell better. As if that weren’t enough, chilling tomatoes can damage cell membranes, which can actually cause them to spoil more quickly.

In summary, not only will tomatoes last longer out of the fridge, they will actually contain more healthy lycopene!

Anecdotally, once I got over my scepticism and actually started leaving my tomatoes on my windowsill (after years of refrigeration) I discovered that it’s true. My windowsill tomatoes really do seem to last longer than they used to in the fridge, and they almost never go mouldy. Of course, it’s possible that I might not be comparing like for like (who knows what variety of tomato I bought last year compared to this week), but I urge you to try it for yourself.

James mentioned lots of other interesting bits and pieces in his talk. Did you know that sun-dried shiitake mushrooms are much higher in vitamin D? Or that you can double the amount of flavonoid you absorb from your blueberries by cooking them? (Take that, raw food people!) Storing apples on your windowsill is likely to increase the amount of healthy polyphenols in their skin, red peppers are better for you than green ones, adding mustard to cooked broccoli makes it more nutritious, and it would be much better if we bought our butternut squash in the autumn and saved it for Christmas – it becomes sweeter and more flavoursome over time.

In short, fascinating. Who wants to listen to some “clean eater” making it up as they go along when you can listen to a fully-qualified botanist who really knows what he’s talking about? Do check out the book, How to Eat Better, by James Wong – it’s packed full of brilliant tidbits like this and has loads of recipes.

And yes, Dad: you were right.


Like the Chronicle Flask’s Facebook page for regular updates, or follow @chronicleflask on Twitter. All content is © Kat Day 2017. You may share or link to anything here, but you must reference this site if you do.


All comments are moderated. Abusive comments will be deleted, as will any comments referring to posts on this site which have had comments disabled.