Brilliant Bee Chemistry!

20th May is World Bee Day, the aim of which is to raise awareness of the importance of bees and beekeeping. So, hey, let’s do that!

I’m helped this month by my horticulturist* dad who, while working in a public garden recently, discovered this honeybee swarm in a honeysuckle. (Me: “what sort of tree is that?” Dad: “a winter flowering Honeysuckle lonicera. It’s a shrub, not a tree!” Yes, despite his tireless efforts I’m still pretty clueless about plants.)

Now, Dad knows what he’s doing in such situations. He immediately called the professionals. One does not mess around with (or ignore) a swarm of bees – one finds a beekeeper, stat. Obviously bees can sting, but they’re also endangered and they need to be collected to protect them. Should you find yourself in such a situation, you can find someone local via the British Beekeepers Association website.

That out of the way, aren’t they gorgeous? A swarm like this is a natural phenomenon, that happens when new queen bees are born and raised in the colony. Worker bees stop feeding the old queen – because a laying queen is too heavy to fly – and then in time she leaves with a swarm. They cluster somewhere, as you see in the photo, while scout bees go looking for a new location to settle. Bees in swarms only have the honey or nectar in their stomachs to keep them going, so they’ll starve if they don’t find a new home, and nectar, quickly.

This is all fascinating, of course, but what does it have to do with chemistry? Well, quite a bit, because bees are brilliant chemists. Really!

Ethyl oleate is an ester and an important chemical for bees (image source)

Firstly, despite what DreamWorks might have taught us, bees don’t have vocal cords, and they don’t sound like Jerry Seinfeld. A lot of their communication is chemical-based (actually, it turns out this is a topic of hot debate in bee circles, but since this is a chemistry blog, I’m not doing waggle dances. No, not even if you ask nicely).

As you might imagine, there are multiple chemicals involved, and I won’t go into all of them. Many are esters, which are known for their sweet, fruity smells, and which are also (at least, the longer-chain ones) the building blocks of fats.

One such chemical is ethyl oleate which plants produce and which, interestingly, we humans also make in our bodies when we drink alcohol. Forager bees gather ethyl oleate and carry it in their stomachs, and they then feed it to worker bees. It has the effect of keeping those workers in a nurse bee state and prevents them from maturing into forager bees too early. But, as forager bees die off, less ethyl oleate is available, and this “tells” the nurse bees to mature more quickly – so the colony makes more foragers. Clever, eh?

In this situation, ethyl oleate is acting as a pheromone, in other words, a substance that triggers a social response in members of the same species. Another example is Nasonov’s pheromone, which is a mixture of chemicals including geraniol (think fresh, “green” smell), nerolic acid, geranic acid (an isomer of nerolic acid) and citral (smells of lemon).

The white gland at the top of the honeybee’s abdomen releases pheromones which entice the swarm to an empty hive (image source)

An interesting aside: geranic acid has been investigated as an antiseptic material. It can penetrate skin, and has been shown to help the delivery of transdermal antibiotics, which are being investigated partly as a solution to the problem of antibiotic resistance. Nature is, as always, amazing.

Anyway, worker bees (which, again contrary to DreamWorks’ narrative, are female) release Nasonov’s pheromone to orient returning forager bees (also female) back to the colony. They do this by raising up their abdomens and fanning their wings. Beekeepers can use synthetic Nasonov pheromone, sometimes mixed with a “queen bee pheromone” to attract honeybee swarms to an unoccupied hive or swarm-catching box.

As my Dad chatted to the beekeepers (partly on my insistence – I was on the other end of my phone texting questions and demanding photos) one substance they were particularly keen to mention was “the alarm pheromone,” which “smells of bananas.”

Ooh, interesting, I thought. Turns out, this is isoamyl acetate, which is another ester. In fact, depending on your chemistry teacher’s enthusiasm for esters, you might even have made it in school – it forms when acetic acid (the vinegary one) is combined with 3-methylbutan-1-ol (isoamyl alcohol).

Never eat a banana by a bee.

Isoamyl acetate is used to give foods a banana flavour and scent. But, funnily enough, actual bananas you buy in the shops today don’t contain very much of it, the isoamyl acetate-rich ones having been wiped out by a fungal plague in the 1990s. This has lead to the peculiar situation of banana-flavoured foods tasting more like bananas than… well… bananas.

Modern bananas can still be upset bees, though. There are numerous stories of unwary individuals who walked too close to hives while eating a banana and been attacked. So, top tip: if you’re going on a picnic, leave the bananas (and banana-flavoured sweets, milkshakes etc) at home.

The reason is that banana-scented isoamyl acetate is released when honeybees sting. They don’t do this lightly, of course, since they can’t pull out the barbed stinger afterwards, and that means the bee has to leave part of its digestive tract, muscles and nerves embedded in your skin. It’s death for the bee, but the act of stinging releases the pheromone, which signals other bees to attack, attack, attack.

One bee sting might not deter a large predator, but several stings will. Multiple bee stings can trigger a lethal anaphylactic reaction, known allergy or not. So although utilising their stingers causes the death of a few (almost certainly infertile) bees, the rest of the colony (including the fertile individuals) is more likely to survive. From an evolutionary perspective it’s worth it – genes survive to be passed on.

Isoamyl acetate

Isoamyl acetate is an ester that smells of bananas, and is an alarm pheremone for bees (image source)

Moving on, I obviously can’t write a whole blog post about bees and not mention honey! We take it for granted, but it’s amazingly complicated. It contains at least 181 different substances, and nothing human food scientists have been able to synthesise quite compares.

In terms of sugars, it’s mostly glucose and fructose. Now, I’ve written about sugars extensively before, so I won’t explain them yet again, but I will just reiterate my favourite soap-box point: your body ultimately doesn’t distinguish between “processed” sugars in foods and the sugars in honey. In fact, one might legitimately argue that honey is massively processed, just, you know, by bees. So, you want to cut down on your sugar intake for health reasons? Sorry, but honey needs to go, too.

Honey is actually a supersaturated solution. In very simple terms, this means there’s an excess of sugar dissolved in a small amount of water. One substance which bees use to achieve this bit of clever chemistry is the enzyme, invertase, which they produce in their salivary glands. Nectar contains sucrose (“table sugar”) and, after the bees collect nectar, invertase helps to break it down into the smaller molecules of glucose and fructose.

“Set” honey is honey that’s been crystallised in a controlled way.

That’s only the beginning, though. There are lots of other enzymes involved. Amylase breaks down another sugar, amylose, into glucose. And glucose oxidase breaks down glucose and helps to stabilise the honey’s pH. One of the molecules produced in the reaction with glucose oxidase produces is hydrogen peroxide, which yet another enzyme, catalase, further breaks down into water and oxygen.

Bees regurgitate and re-drink nectar (yes, I suggest you don’t overthink it) over a period of time, which both allows the sugar chemistry to happen and also reduces the water content. When it’s about one-fifth water, the honey is deposited in the honeycomb, and the bees fan it with their wings to speed up the evaporation process even further. They stop when it’s down to about one-sixth water.

As I said a moment ago, honey is a supersaturated solution, and that means it’s prone to crystallising. This isn’t necessarily bad, in fact, “set” honey (my personal favourite) is honey which has been crystallised in a controlled way, so as to produce fine crystals and a creamy (rather than grainy) product.

The formation of a new honeycomb.

The potential problem with crystallisation is that once the sugar crystals fall out of solution, the remaining liquid has a higher-than-ideal percentage of water. This can allow microorganisms to grow. In particular, yeasts can take hold, leading to fermentation. Honey left on the comb in the hive tends not to crystallise, but once it’s collected and stored, there’s a greater chance that some particle of something or other will get in there and trigger the process. It helps to store it somewhere above room temperature. And honey is naturally hygroscopic, which means it absorbs water. So store it somewhere dry. In short, never put honey in the fridge.

Speaking of yeast and heat, heating changes honey and makes it darker in colour, thanks to the Maillard reaction. Commercial honey is often pasteurized to kill any yeast, which improves its shelf life and produces a smoother product. Also, because honey is naturally slightly acidic (around pH 4), over time the amino acids within in start to break down and this also leads to a darkening of the colour.

One more important safety concern: honey, even when pasteurized, can contain bacteria that produce toxins in a baby’s intestines and lead to infant botulism. So, never give children under one honey. It’s not a risk for older children (and adults) thanks to their more mature digestive systems.

T

Back to Dad’s bees! They were collected in a transport box by two local experts, Sharon and Ian. The bees march into the box two-by-two, wafting Nazonov’s pheromone to signal that this is home. From there, they were safely transferred to a new, wooden hive.

There’s only one way to finish this post, I think, and that’s with one of my all-time favourite Granny Weatherwax moments:

‘Your bees,’ she went on, ‘is your mead, your wax, your bee gum, your honey. A wonderful thing is your bee. Ruled by a queen, too,’ she added, with a touch of approval.

‘Don’t they sting you?’ said Esk, standing back a little. Bees boiled out of the comb and overflowed the rough wooden sides of the box.

‘Hardly ever,’ said Granny. ‘You wanted magic. Watch.’

Happy World Bee Day, everyone and, as always, GNU Terry Pratchett.


* Dad was unsure about the label “horticulturist” but I pointed out that the definition is an expert in garden cultivation and management, particularly someone’s who’s paid for their work. All of which he is. He replied wryly that, “x is an unknown quantity, and a spurt is a long drip.” Love you, Dad x 😄


If you’re studying chemistry, have you got your Pocket Chemist yet? Why not grab one? It’s a hugely useful tool, and by buying one you’ll be supporting this site – it’s win-win! If you happen to know a chemist, it would make a brilliant stocking-filler! As would a set of chemistry word magnets!

Like the Chronicle Flask’s Facebook page for regular updates, or follow @chronicleflask on Twitter. Content is © Kat Day 2021. You may share or link to anything here, but you must reference this site if you do. If you enjoy reading my blog, and especially if you’re using information you’ve found here to write a piece for which you will be paid, please consider buying me a coffee through Ko-fi using the button below.
Buy Me a Coffee at ko-fi.com

Want something non-sciency to distract you from, well, everything? Why not check out my fiction blog: the fiction phial.

 

Is it possible to give up sugar completely?

It’s January, a month that’s traditionally marked by cold weather, large credit-card bills and, of course, an awful lot of highly questionable health stuff. Juicing, detox, supplements… it’s all good fun. Until someone gets hurt.

"Refined" sugar is almost entirely made up of a molecule called sucrose.

“Refined” sugar is almost entirely made up of a molecule called sucrose.

One substance that regularly gets a bashing is sugar, particularly so-called “refined” sugar. We’re told it’s toxic (it’s not), it’s more addictive than cocaine (it isn’t) and we should definitely all be trying to give it up.

Now, before I go any further with this, a word about healthy eating. I’m not a dietician. I don’t even claim to be a nutritionist (although I could, if I wanted). However, I think I’m on fairly safe ground if I say that we should all be striving for a healthy, balanced diet. That is, a diet containing a broad range of foods, plenty of fruits and vegetables, healthy amounts of protein and some good fats.

A lot of people have diets that fall short of this ideal. Cutting back on foods which contain a lot of added sugar (cakes, chocolate, fizzy drinks, etc) and eating more vegetables and fruits is a good, and sensible, course of action.

The problem is that bit of common-sense advice doesn’t sell books or make an interesting TV show. It’s all a bit boring and, worse, it’s freely available. Compelling entertainment needs to be more exciting, more dramatic, more… extreme.

Which brings us to ITV’s Sugar Free Farm.

Page 81 of the current issue of Radio Times tells us that the celebrities face a "completely sugar-free regime".

Page 81 of the current issue of Radio Times tells us that the celebrities face a “completely sugar-free regime”.

This is actually the second series of this show, which first aired last year. According to the 7-13th January 2017 issue of the Radio Times:

“Seven celebrities who admit to terrible diets succumb to a few weeks of hard farm labour and a completely sugar-free regime (so no white carbs or fruit, let alone chocolate).”

Hm. Now, I’ve written about sugar more than once before, but to save clicking back and forth, here’s another quick summary:

Sugar is not one thing. The chemistry of sugars is quite complicated, but a human being trying to understand the food they eat probably needs to be aware of three main types, namely: glucose, fructose and sucrose.

180px-Glucose_chain_structure

glucose

Glucose is the sugar that all your cells need. Not having enough glucose in your bloodstream is called hypoglycaemia, and the result is seizure, coma and ultimately death. This isn’t a risk for healthy people without pre-existing conditions (like diabetes, for example) because evolution has put some clever safety-nets in place. First, our bodies are extremely efficient at carrying out the necessary chemistry to turn the molecules we eat into the molecules we need. Should that fail, our bodies are very good at storing nutrients to use in times when our diet doesn’t supply them. If you don’t eat glucose, your body will break down other foods to produce it, then it’ll start on your glycogen stores, move on to fat stores, and eventually start breaking down protein (i.e. the stuff in your muscles). This means that unless you stop eating completely for a fairly long period of time, you’ll survive.

Still, I think it’s important to emphasise the point: glucose is essential for life. The suggestion that this substance is “toxic” and thus should be completely eliminated from our diets is really, when you think about it, a bit odd.

Sucrose ("refined sugar") is a unit of glucose joined to a unit of fructose

Sucrose (“refined sugar”) is a unit of glucose joined to a unit of fructose

Ah but, I hear some people saying, no one is saying that glucose is toxic! They’re talking about refined sugar!

Fine. So what’s “refined” sugar? In simple terms, it’s pure sucrose. And sucrose is just a molecule made from a unit of glucose stuck to a unit of fructose. As I said, our bodies are really good at breaking up the molecules we eat into the molecules we need: our cells can’t use sucrose for energy, so all that happens is that it more or less instantly gets broken up into glucose and fructose.

Refined sugar is, basically, half glucose and half fructose, and it’s no more dangerous or “toxic” than either of those substances. And while I’m here, “natural” sugar options are little different: honey, for example, contains similar ratios of fructose and glucose.

200px-Skeletal_Structure_of_D-Fructose

Fructose

Allrighty then, what’s fructose? Fructose is another simple sugar, and it’s the one that plants produce. For that reason it’s sometimes called “fruit sugar”.

Our cells can’t use fructose for energy, either. But, same thing again: if you eat it your body will still use it. In this case, your liver does the heavy lifting; changing fructose into glucose and other substances, some of which are fats. On the one hand, this is a slower process so you don’t get the blood sugar spike with fructose that you get with glucose. On the other, some of the fructose you eat inevitably ends up being converted into fat.

As I mentioned, fructose is the sugar in plants. It’s found in almost all plant-based foods. For example, the USDA food composition database tells us that 100 g of carrots contains about 0.6 g of fructose. Perhaps surprisingly, broccoli contains slightly more: about 0.7 g per 100 g. Iceberg lettuce contains even more, at 1 g per 100 g, whereas green peas contain a mere 0.4 g.

Even a really small glass of fruit juice contains about 150 g.

Even a small serving of fruit juice usually contains at least 150 g.

None of this comes close to fruit. Apples contain about 6 g of fructose per 100 g, grapes 4 g and bananas 5 g. Dried fruit, as you’d expect, has considerably higher amounts by weight – because the water’s gone. Juices have similar amounts of fructose per unit of weight but, of course, you tend to drink a lot more than 100 g of juice at a time.

Now we understand why “Sugar Free Farm” has banned fruit. But this is why I have a problem with the title: you CAN’T eat an entirely “sugar-free” diet, unless all you eat is meat, fish, eggs and dairy products like cream and butter (but not milk, which contains lots of another sugar: lactose). This would be a far from healthy diet, seriously lacking in fibre as well as a host of vitamins and minerals (even “phase 1” or the “induction” period of the controversial Atkins diet isn’t quite this extreme).

The show hasn’t aired yet, and I admit I didn’t watch it last year, so I don’t know if that’s what they’re doing. But I seriously doubt it – it would be unethical and irresponsible. Plus, the words “white carbs” in the listings blurb make me suspicious. Why specify “white”? Are whole grains included? And what about pulses? Whole grain foods might be relatively low in fructose and glucose before you put them in your mouth, but as soon as saliva hits them the starch they contain is broken down into…. glucose. By the time you swallow that chewed-up food, it contains sugar.

In summary, Sugar Free Farm is almost certainly not sugar free. What they appear to have set up is a place where sugars are restricted and foods with added sugar are banned, and then mixed that with lots of outdoor activities (the celebrities are also expected to work on the farm).

Most people would lose weight following such a regime, because it’s likely that calories in are going to be lower than calories out. It’s a simple calorie deficit.

give-up-sugarWhat bothers me is that the show might go on to conclude that we should all “give up” sugar to lose weight – and some people might misinterpret that and end up embarking on an unbalanced, unhealthy and ultimately unsustainable diet – when in fact the results are simply due to calorie deficit.

There’s no need to try to give up sugar. Cut down, yes, but you can eat some sweet foods and still manage a calorie deficit. In fact you probably should: fruit in particular has lots of nutrients, including fibre. Besides, such a diet will probably be a lot more sustainable in the long term.

Unfortunately, “Eat Fewer Calories And Do Some Exercise Farm” doesn’t have quite the same ring, does it?


EDIT, 11th Jan 2017

Well, the first episode aired last night. No, the diet is not “zero sugar”. It’s very low in sugar, yes, but there are sugars. They used milk (contains lactose), ate wholemeal bread, brown rice and oats (all of which are broken down into glucose) and ate a variety of vegetables which, as I mentioned above, all contain small amounts of sugar. In fact, on their very first morning they eat a strange granola mixture made with sweet potato. The USDA food database tells me that sweet potato contains about 0.4 g of fructose, 0.5 g of glucose, 3.3 g of maltose AND 1.4 g of sucrose per 100 g. Yep. Sucrose. The stuff in “refined” sugar.

There was much talk of “detox” and “detoxing” from sugar. Sigh. That’s not a thing. Most worryingly of all, poor Peter Davison (he was “my” Doctor, you know) was carted off in an ambulance on the second day, suffering with dizzy spells. Everyone immediately started talking about how dreadful it was that “sugar” had caused this. There was only one, in passing, comment shown suggesting that perhaps the 65-year-old might have something else wrong with him. In fact, it turned out that he had labyrinthitis, an inner-ear condition. It’s usually viral. It’s not caused by “sugar withdrawal”. I’m sure they’ll make that clear in the next episode, right?

Speaking of which, the celebrities are on Sugar Free Farm for 15 days. A safe rate of weight loss is generally considered to be 0.5-1 kg (or 1-2 lb) a week. So they should lose about 2 kg, or 4 lb, on the outside. A snippet was shown at the end of the program in which Alison Hammond said she was “pleased” she’d lost 8 lbs. Whether that was after two weeks or a shorter period of time wasn’t clear, but either way, it’s a lot. It suggests that her diet is/was too low in calories, particularly considering all the extra physical activity.  Perhaps some of her so-called “sugar withdrawal” symptoms were actually simply due to the fact that she wasn’t consuming enough to keep up with her energy needs?

That aside, the diet they followed did seem to be fairly balanced, with plenty of vegetables and adequate healthy fats and protein. They had all been eating huge quantities of sugary foods beforehand, and cutting down is no bad thing. I’m just skeptical about exactly how much of the bad, and indeed the good, can be pinned on sugar.

Still, it made good telly I suppose.


Like the Chronicle Flask’s Facebook page for regular updates, or follow @chronicleflask on Twitter. In need of a groovy new mug? Check out this page.


All comments are moderated. Abusive comments will be deleted, as will any comments referring to posts on this site which have had comments disabled.

Something about sugar (free)

Blenheim Flower Show

The Blenheim Flower Show

Last month I went to the Blenheim Flower Show. I hadn’t been before, and I wasn’t quite sure what to expect. In my head I was imagining rows and rows of flowers with a sort of maze-like path through them. I have no idea why, possibly I’ve been doing too much Wizard of Oz (this is not a euphemism).

Perhaps not surprisingly it wasn’t like that at all. In fact the flowers were confined to a couple of easily-avoidable tents, leaving me to wander around stalls selling everything from jewellery to space-saving furniture, chat to the jolly interesting chaps giving a bee-keeping demonstration and scrounge free samples from the food tent.

And it was in the food tent that I came across the Raw Chocolate Pie stall. Sounds good doesn’t it? They’ve combined some very appealing words there. Anyway, the ladies on the stall were very nice and gave me some pieces to taste, and it was indeed scrummy, and sweet. I mention this because in huge letters across the top of the stall were the words “sugar free”. Hm, I thought. They had already told me that the ‘pies’ (actually more like chocolatey lumps) were made with raw cacao beans. Now, I’m a fan of dark chocolate and I’ve tasted 90% cocoa chocolate. It’s bitter. Bitter with a capital bit. It also has a sort of powdery texture due to the low fat content, and this had neither quality.

“So,” I said conversationally, “what’s it sweetened with?”

“Agave nectar,” came the reply.

thefoodofthegodsAt this point I’d heard of agave nectar but I wasn’t really sure what it actually was, so I simply nodded and bought a bar of nut pie. I intended to bring it home and investigate it properly, but it was hot and it got a bit melty, so I was forced to eat it at lunchtime. I took a picture of the wrapper though.

See how it says “sugar free” right there at the top? They are big on this claim. It says sugar free all over the Living Food raw chocolate pie website too.

What would you imagine that means?

It’s a pertinent question. Sugar is one of those words, like ‘salt‘ and ‘alcohol‘, which has a subtly different meaning in chemistry than it does in everyday speech. For chemists these are groups of compounds, but if you read “add pinch of salt” in a recipe book you don’t wonder whether to add sodium chloride or the copper sulfate from your child’s chemistry set. Likewise, if a bottle of wine claims to be 14% alcohol you don’t ponder whether it’s safe to drink or whether you should save it for paint stripper. (Unless, that is, it’s very cheap wine indeed.)

No, in everyday speech we know that salt means sodium chloride, alcohol means ethanol and sugar means, er… sugar means…

Sucrose

Sucrose

This is where it gets a bit sticky. Because there’s more than one sugar that we eat on a regular basis. The white, or sometimes brown, stuff that people bake with and plop into their hot beverages is mainly sucrose. It’s also called ‘table sugar’, or sometimes ‘cane sugar’ or ‘beet sugar’, because those are the plants from which it’s extracted.

Raw chocolate pies haven’t been made with cane/beet sugar, so they might be able to truthfully claim to be sucrose-free. But sugar-free? We-ell…

180px-Glucose_chain_structure

Glucose

The other two sugars that we’re probably most familiar with are glucose, which is the fuel our cells use for energy during respiration, and fructose, which is found in plants and which, like glucose, can be absorbed directly into the bloodstream.

200px-Skeletal_Structure_of_D-Fructose

Fructose

So fructose is found in plants. In fact, fructose is often found in plants chemically bonded to glucose. To make…. sucrose.

So in short:
glucose + fructose = sucrose

And they’re all sugars, and we eat them all on a fairly regular basis. Our bodies break up sucrose into units of glucose and fructose during digestion, and it’s fair to say that none of them are particularly healthy if consumed in large quantities. They’re calorific, bad for your teeth, nutrient-free (other than as an energy source), and regularly eating large quantities of sugar (of any kind) puts you at a greater risk of type II diabetes.

So what’s in agave nectar? Well it comes from a plant, the agave plant, so if you’ve been paying attention that should give you a clue. Yep, it’s packed full of fructose. Which is a sugar. In fact, there are a lot of health concerns around fructose. You may have heard of high fructose corn syrup, or HFCS. This stuff is controversial, with claims that it contributes to obesity, cardiovascular disease, diabetes and non-alcoholic fatty liver disease. Other groups claim these links are unproven, and it’s no worse than any other type of sugar. These groups are mainly people that make and sell high fructose corn syrup, so draw your own conclusions.

Back to agave nectar or, more accurately, syrup. It actually has considerably more fructose than high fructose corn syrup. So bearing all that in mind, is it a healthy alternative? Er, almost certainly not.

Is it correct to call something that’s sweetened with agave ‘sugar free’?

I had a little poke around the Food Standards website. It was something of a slog, but as far as I can work out, the word ‘sugar’ in an ingredients list specifically refers to sucrose. So, you don’t have to list ‘sugar’ in the ingredients list if sucrose isn’t specifically used as an ingredient. But what about the term ‘sugar-free’?

I struggled to find a clear definition of this term on the FSA website, which was a bit annoying (see update below). The best source I can come up with is The Sugar Association, which I’m fairly sure is an American site and so the information quoted wouldn’t apply to a British producer. Still, it’s the best I’ve got, and I’d put money on the rules being similar if not quite identical. This is what they say:

‘“Sugar Free”: Less than 0.5 g sugars per reference amount and per labeled serving (or for meals and main dishes, less than 0.5 g per labeled serving). No ingredient that is a sugar or generally understood to contain sugars except as noted below(*)’ (sic)

The “as noted below” refers to sugar alcohols. These are things like xylitol, mannitol and sorbitol. They often turn up in things like chewing gum. Fructose, at the risk of stating the obvious, is not a sugar alcohol.

There was no percentage composition on the raw chocolate pie wrapper, but just from the taste I’m pretty certain it had more than 0.5 g of sugars (i.e. fructose) per serving. Nothing is that sweet without sugars, unless it also contains artificial sweeteners (which aren’t listed as an ingredient).

I did find this on the Food Standards website:

“To sell food and drink products, the label must be: […] not misleading”

Sugar-free Coke?

Sugar-free Coke?

Is calling something sweetened with a high-fructose syrup (because that’s what agave ‘nectar’ is) misleading? I’m afraid to say that, although I did very much enjoy my nut pie snack, I think it is. By the logic that seems to be being applied here, Coca Cola could use high fructose corn syrup as an sweetener and label their red non-diet bottles and cans as sugar-free, which would be patently ridiculous.

It’s a shame really, because Living Food have a nice product. They just need to get their labelling sorted out.

—-

Update 4th August 2014
After I wrote this I continued my quest to find a proper definition of “sugar-free”. I tried the Food Standards Agency, who sent me to Defra, who ignored me. So I went back to the FSA, who eventually sent me this link. It’s a very interesting document, clarifying and giving examples of how EU Regulation No. 1924/2006, which is all about nutrition and health claims on food, should be applied. On page 70 it says:

‘”The Regulation does […] define any product with no more than 0.5g of sugar per 100ml or per 100g as “sugar free”’

And so conversely, anything with more than 0.5 g of sugar per 100 g as NOT sugar-free. (The official definitions of sugar-free, low-sugar and no added sugar can all be found in the Annex, on page 14, of EU Regulation No. 1924/2006). What still wasn’t entirely clear was exactly what’s meant by ‘sugar’. But now I had somewhere to start. Rooting through EU Regulation No. 1924/2006 I found that it referred to Directive 90/496/EEC for definitions. And there, finally, I got my answer, in Article 1, page 4:

“‘sugars’ means all monosaccharides and disaccharides present in food, but excludes polyols”

Voilà! Fructose is a monosaccharide, and therefore if your product has more than 0.5 g of fructose per 100 g, then it cannot accurately be labelled sugar-free.

I can’t prove this is the case for the Raw Chocolate Pies, since I my testing involves tasting two samples. But if it looks like a duck, and quacks like a duck, it’s probably a very sugary duck.

The question of ‘no added sugar’ may be somewhat irrelevant, since they’re not making this claim, but I think it’s illuminating. If agave syrup has been added then “no added sugar” can’t even be used, since (from regulation (EC) No. 1924/2006):

“A claim stating that sugars have not been added to a food, and any claim likely to have the same meaning for the consumer, may only be made where the product does not contain any added mono- or disaccharides or any other food used for its sweetening properties.”

So that’s the end of the journey, really. You can only call something sugar-free if there’s no sugar in it, and that includes fructose (‘fruit sugar’), glucose and sucrose (‘table’ sugar). Foods sweetened with agave, which contains fructose, aren’t sugar-free, unless they have only the tiniest amount – less than 0.5 g per 100 g – added.