Alkaline water: if you like it, why not make your own?

Me* reading the comments section on the Amazing Alkaline Lemons post (*not actually me)

Alkaline water seems to be a trend at the moment. Not quite so much in the UK, yet, but more so in the US where it appears you can buy nicely-packaged bottles with the numbers like 8 and 9.5 printed in large, blue letters on their sides.

It’s rather inexplicable, because drinking slightly alkaline water does literally NOTHING for your health. You have a stomach full of approximately 1 M hydrochloric acid (and some other stuff) which has an acidic pH of somewhere between 1.5 and 3.5. This is entirely natural and normal – it’s there to kill any bugs that might be present in your food.

Chugging expensive water with an alkaline pH of around 9 will neutralise a bit of that stomach acid (bringing the pH closer to a neutral value of 7), and that’s all it will do. A stronger effect could be achieved with an antacid tablet (why isn’t it antiacid? I’ve never understood that) costing around 5p. Either way, the effect is temporary: your stomach wall contains special cells which secrete hydrochloric acid. All you’re doing by drinking or eating alkaline substances is keeping them busy.

(By the way, I’m not recommending popping antacids like sweeties – it could make you ill with something called milk-alkali syndrome, which can lead to kidney failure.)

Recently, a video did the rounds of a woman testing various bottled waters, declaring the ones with slightly acidic pHs to be “trash” and expressing surprise that several brands, including Evian, were pH neutral. The horror. (For anyone unsure, we EXPECT water to have a neutral pH.)

Such tests are ridiculous for lots of reasons, not least because she had tiny amounts of water in little iddy-biddy cups. Who knows how long they’d been sitting around, but if it was any length of time they could well have absorbed some atmospheric carbon dioxide. Carbon dioxide is very soluble, and it forms carbonic acid when it dissolves in water which, yes, would lower the pH.

Anyway, there’s absolutely nothing harmful about drinking water containing traces of acid. It doesn’t mean the water is bad. In fact, if you use an ion exchange filter (as found in, say, Brita filter jugs) it actually replaces calcium ions in the water with hydrogen ions. For any non-chemists reading this: calcium ions are the little sods that cause your kettle to become covered in white scale (I’m simplifying a bit). Hydrogen ions make things acidic. In short, less calcium ions means less descaling, but the slight increase in hydrogen ions means a lower pH.

So, filtered water from such jugs tends to be slightly acidic. Brita don’t advertise this fact heavily, funnily enough, but it’s true. As it happens, I own such a filter, because I live in an area where the water is so hard you can practically use it to write on blackboards. After I bought my third kettle, second coffee machine and bazillionth bottle of descaler, I decided it would be cheaper to use filtered water.

I also have universal indicator strips, because the internet is awesome (when I was a kid you couldn’t, easily, get this stuff without buying a full chemistry set or, ahem, knowing someone who knew someone – now three clicks and it’s yours in under 48 hours).

The pH of water that’s been through a (modern) ion-exchange filter tends to be slightly acidic.

The water in the glass was filtered using my Brita water filter and tested immediately. You can see it has a pH of about 5. The water straight from the tap, for reference, has a pH of about 7 (see the image below, left-hand glass).

The woman in the YouTube video would be throwing her Brita in the trash right now and jumping up and down on it.

So, alkaline water is pretty pointless from a health point of view (and don’t even start on the whole alkaline diet thing) but, what if you LIKE it?

Stranger things have happened. People acquire tastes for things. I’m happy to accept that some people might actually like the taste of water with a slightly alkaline pH. And if that’s you, do you need to spend many pounds/dollars/insert-currency-of-choice-here on expensive bottled water with an alkaline pH?

Even more outlandishly, is it worth spending £1799.00 on an “AlkaViva Vesta H2 Water Ionizer” to produce water with a pH of 9.5? (This gizmo also claims to somehow put “molecular hydrogen” into your water, and I suppose it might, but only very temporarily: unlike carbon dioxide, hydrogen is very insoluble. Also, I’m a bit worried that machine might explode.)

Fear not, I am here to save your pennies! You do not need to buy special bottled water, and you DEFINITELY don’t need a machine costing £1.8k (I mean, really?) No, all you need is a tub of….

… baking soda!

Yep, good old sodium bicarbonate, also known as sodium hydrogencarbonate, bicarb, or NaHCO3. You can buy a 200 g tub for a pound or so, and that will make you litres and litres and litres of alkaline water. Best of all, it’s MADE for baking, so you know it’s food grade and therefore safe to eat (within reason, don’t eat the entire tub in one go).

All you need to do is add about a quarter of a teaspoon of aforementioned baking soda to a large glass of water and stir. It dissolves fairly easily. And that’s it – alkaline water for pennies!

Me* unconvinced by the flavour of alkaline water (*actually me).

Fair warning, if you drink a lot of this it might give you a bit of gas: once the bicarb hits your stomach acid it will react to form carbon dioxide – but it’s unlikely to be worse than drinking a fizzy drink. It also contains sodium, so if you’ve been told to watch your sodium intake, don’t do this.

If I had fewer scruples I’d set up shop selling “dehydrated alkaline water, just add water”.

Sigh. I’ll never be rich.


Like the Chronicle Flask’s Facebook page for regular updates, or follow @chronicleflask on Twitter. All content is © Kat Day 2017. You may share or link to anything here, including the images, but you must reference this site if you do.


All comments are moderated. Abusive comments will be deleted, as will any comments referring to posts on this site which have had comments disabled.

Liquid calcium? Why words really matter in chemistry

dl-265_1zI happened to see an advert for Arm & Hammer toothpaste on TV a couple of days ago, in which they cheerfully proclaimed that it contained “liquid calcium”.

navigator_highlighted_periodic_table

Calcium, on the left. With the metals.

This brought me up short.  First thing: calcium is a metal.  Now, as a famous British movie star might say (or perhaps might not say), “not many people know that”.  Ask a roomful of people if calcium is a metal and most of them will tell you it’s not.   I’ve even heard students who know what the periodic table is and what the position of elements within it means, and who can see calcium right there on the left hand side, express their doubts.  Everyone associates calcium with bones and teeth, possibly rocks at a push.  No one (other than chemists of course) hears ‘calcium’ and thinks of a silvery-grey metal.

But that is indeed what it is.  It is a metal, and although its melting point isn’t huge in the grand scheme of metals, it’s still a fairly substantial 842 oC.  The temperature in your bathroom is probably in the region of 20 oC.  In fact your kitchen oven probably only goes up to about 240 oC, so the melting point of calcium is some 600 oC hotter than the hottest setting on your oven.

ca_2_2

Calcium and water: what you can’t see is how hot this sucker is going to get.

Temperature problems aside, pure calcium is also highly reactive.  Drop some in water and you’ll see a lot of violent bubbling followed by the solution turning white as a corrosive calcium hydroxide solution forms.  The bubbling is due to flammable, potentially explosive, hydrogen gas.  Oh, and it will get really, really hot too – this is what chemists call an exothermic reaction.  I for one will confess to once (many, many years ago, of course) dropping a red-hot boiling tube into which I’d popped just a little too much calcium metal.  After it had also bubbled up and covered my hand with the aforementioned calcium hydroxide.  Ooopsie.  (Fear not, my hand survived unscathed, after the application of copious amounts of cold water – the go-to cure for most chemical exposures).

So, at the risk of stating the obvious, there’s no liquid calcium in Arm & Hammer toothpaste.  And a jolly good thing too.

What is there?  At this point I should probably point out that Arm & Hammer are quite careful, in their literature and on their packaging, to always put a little ™ by “Liquid Calcium”.  A quick glance at their website clarifies that they’re talking something called “Liquid Calcium ™ Technology” which refers to an ingredient that contains “up to 8 times more calcium and phosphate ions than the amount found in saliva so it is able to replenish ion content in your mouth and subsequently re-mineralise and protect your teeth more efficiently.”

Ah, now we get to the truth of the matter.  It’s not liquid calcium, but calcium ions in solution.

Does this matter?  Am I being unnecessarily pedantic?  Liquid/solution, calcium metal/calcium ions, what’s the difference?

H2O2

When an extra O really matters.

Well, the thing is, chemists are pedantic.  See, in chemistry, it genuinely could be a matter of life and death.  Ethanol, for example, is ‘drinking’ alcohol.  It’s the stuff in beer, and wine, and strawberry daiquiris.  It may not be exactly healthy, but most adults can consume some fairly safely.  Ethanal, on the other hand, is a toxic and probably carcinogenic substance that’s mainly used industrially as a starting point to make other chemicals.

To pick another example, chlorine is a highly toxic gas that’s been used in chemical warfare; chloride ions are found in salt and are consumed perfectly safely every day.  The difference between ions (atoms or molecules which have become charged due to the gain, or loss, of electrons) and atoms is really quite critical in chemistry, and in life in general.

potassium and water

Potassium reacting with water – pretty!

‘Everybody’ knows that bananas contain lots of potassium.  But potassium is another highly-reactive metal.  In fact it’s even more reactive than calcium.  Potassium explodes with a rather beautiful lilac flame in contact with water.  It’s pretty to watch, but you wouldn’t want it in your mouth.  Actually bananas contain potassium ions (and just to really mess with everything you thought you knew, not even that much compared to lots of other foods).

Back to the dubious labelling again, It’s interesting that Arm & Hammer have chosen to say “fluoride” – which specifically, and correctly, refers to fluoride ions – and not “liquid fluorine”.  I mean surely, in the spirit of consistency, it should be liquid fluorine and liquid calcium (argh!), or fluoride ions and calcium ions.

The word liquid has a specific meaning in chemistry.  It means a pure element or compound in its molten state.  Pure water at room temperature is a liquid.  So is ethanol, and mercury, and bromine (interestingly these last two are the only chemical elements which are liquids at room temperature).  Ethanol dissolved in water, as it is in strawberry daiquiris (more or less), isn’t a liquid.  It’s a solution.  This matters.  Liquid ethanol is pure ethanol.  Drink that and you’re looking serious alcohol poisoning in the face, and it’s about to wallop you for looking at it funny.

frustration_350px

An Arm & Hammer chemist?

Saying, or even implying, that calcium ions in solution is ‘liquid calcium’ is like saying that seawater is liquid sodium (sodium is another highly reactive metal – orange flame this time).  It’s just nonsense.  Ok, it’s probably not going to cause anyone any actual harm, but that’s not the point.  It’s completely factually inaccurate.  I am absolutely certain that the chemists working for Arm & Hammer wanted to tear their hair out when the advertising company came up with this name for the formulation they’d spent (probably) years slaving over.  And I expect they were essentially told to shut up about it, the vast majority of our customers won’t know the difference.

And sadly this may be true.  But it shouldn’t be.  Would Arm & Hammer care if their boxes were labelled ‘tothpast’ instead of toothpaste?  I bet they’d be bothered if the boxes were priced at £250 instead of £2.50.  Why fuss over spelling and numbers but be careless over scientific literacy?  Either precision matters or it doesn’t.

Perhaps it’s time scientists starting making as much noise about this kind of thing as people who complain about stray apostrophes or the misuse of the word disinterest.  You never know, it might help levels of scientific understanding.

Mind you, perhaps the author of a blog called The Chronicle Flask shouldn’t throw stones…

—-

After I wrote this post I tweeted something referring to “liquid phosphorous”.  It was pointed out to me, quite rightly, that I meant “liquid phosphorus”.  Phosphorus is the noun – the name of the chemical element – and phosphorous is an adjective.  As in, “phosphorous fertiliser”.  I confess I was a bit hazy on that one until made to check, which is ironic really. Consider me sent to the back of the class 😉