Easy Indicators

Indicator rainbow, reproduced with kind permission of Isobel Everest, @CrocodileChemi1

Recently on Twitter CrocodileChemist (aka Isobel Everest), a senior school science technician (shout out to science technicians, you’re all amazing) shared a fabulous video and photo of a “pH rainbow”.

The effect was achieved by combining various substances with different pH indicators, that is, substances that change colour when mixed with acids or alkalis.

Now, this is completely awesome, but, not something most people could easily reproduce at home, on account of their not having methyl orange or bromothymol blue, or a few other things (that said, if you did want to try, Isobel’s full method, and other indicator art, can be found here).

But fear not, I’ve got this. Well, I’ve got a really, really simple version. Well, actually, I’ve got more of an experiment, but you could make it into more of a rainbow if you wanted. Anyway…

This is what you need:

  • some red cabbage (one leaf is enough)
  • boiling water
  • mug
  • white plate, or laminated piece of white card, or white paper in a punched pocket
  • cling film/clear plastic wrap (if you’re using a plate)
  • mixture of household substances (see below)
  • board marker (optional) or pen
  • plastic pipettes (optional, but do make it easier – easily bought online)

First, make the indicator. There are recipes online, but some of them are over-complicated. All you really need to do is finely chop the red cabbage leaf, put it in a mug, and pour boiling water over it. Leave it to steep and cool down. Don’t accidentally drink it thinking it’s your coffee. Pour off the liquid. Done.

If you use a plate, cover it with cling film

Next, if you’re using a plate, cover it with cling film. There are two reasons for this: firstly, cling film is more hydrophobic (water-repelling) than most well-washed ceramic plates, so you’ll get better droplets. Secondly, if you write on a china plate with a board marker it doesn’t always wash off. Ask me how I know.

Next step: hunt down some household chemicals. I managed to track down oven cleaner, plughole sanitiser, washing up liquid, lemon juice, vinegar, limescale remover and toilet cleaner (note: not bleach – don’t confuse these two substances, one is acid, one is alkali, and they must never be mixed).

Label your plate/laminated card/paper in punched pocket with the names of the household substances.

Place a drop of cabbage indicator by each label. Keep them well spaced so they don’t run into each other. Also, at this stage, keep them fairly small. Leave one alone as a ‘control’. On my plate, it’s in the middle.

Add a drop of each of your household substances and observe the colours!

Red cabbage indicator with various household substances

IMPORTANT SAFETY NOTE: some of these substances are corrosive. The risk is small because you’re only using drops, but if working with children, make sure an adult keeps control of the bottles, and they only have access to a tiny amount. Drip the more caustic substances yourself. Take the opportunity to point out and explain hazard warning labels. Use the same precautions you would use when handling the substance normally, i.e. if you’d usually wear gloves to pick up the bottle, wear gloves. Some of these substances absolutely must not be mixed with each other: keep them all separate.

Here’s a quick summary of what I used:

A useful point to make here is that pH depends on the concentration of hydrogen ions (H+) in the solution. The more hydrogen ions, the more acidic the solution is. In fact, pH is a log scale, which means a change of x10 in hydrogen concentration corresponds to a change of one pH point. In short, the pH of a substance changes with dilution.

Compound Interest’s Cabbage Indicator page (click image for more info)

Which means that if you add enough water to acid, the pH goes up. So, for example, although the pH of pure ethanoic acid is more like 2.4, a dilute vinegar solution is probably closer to 3, or even a bit higher.

Compound Interest, as is usually the case, has a lovely graphic featuring red cabbage indicator. You can see that the colours correspond fairly well, although it does look like my oven cleaner is less alkaline (closer to green) than the plughole sanitiser (closer to yellow).

As the Compound Interest graphic mentions, the colour changes are due to anthocyanin pigments. These are red/blue/purple pigments that occur naturally in plants, and give them a few advantages, one of which is to act as a visual ripeness indicator. For example, the riper a blackberry is, the darker it becomes. That makes it stand out against green foliage, so it’s easier for birds and animals to find it, eat it and go on to spread the seeds. Note that “unripe” colours, yellow-green, are at the alkaline end, which corresponds to bitter flavours. “Ripe” colours, purple-red, are neutral to acidic, corresponding with much more appealing sweet and tart flavours. Isn’t nature clever?

You can make a whole mug full of indicator from a single cabbage leaf (don’t drink it by mistake).

Which brings me to my final point – what if you can’t get red cabbage? Supermarkets are bit… tricky at the moment, after all. Well, try with some other things! Any dark-coloured plant/fruit should work. Blueberries are good (and easy to find frozen). The skins of black grapes or the very dark red bit of a rhubarb stalk are worth a try. Blackberries grow wild in lots of places later in the year. Tomatoes, strawberries and other red fruits will also give colour changes (I’ve talked about strawberries before), although they’re less dramatic.

For those (rightly) concerned about wasting food – you don’t need a lot. I made a whole mug full of cabbage indicator from a single cabbage leaf, and it was the manky brown-around-the-edges one on the outside that was probably destined for compost anyway.

So, off you go, have fun! Stay indoors, learn about indicators, and stay safe.

EDIT: after I posted this, a few people tried some more experiments with fruits, vegetables and plants! Beaulieu Biology posted the amazing grid below, which includes everything from turmeric to radishes:

Image reproduced with kind permission of Beaulieu Biology (click for larger version)

And Compound Interest took some beautiful photos of indicator solutions extracted from a tulip flower, while CrocodileChemist did something similar and used the solutions to make a gorgeous picture of a tree. Check them out!


If you’re studying from home, have you got your Pocket Chemist yet? Why not grab one? It’s a hugely useful tool, and by buying one you’ll be supporting this site – it’s win-win!

Want something non-sciency to distract you? Why not check out my fiction blog: the fiction phial. There are loads of short stories, and even (recently) a couple of poems. Enjoy!

Like the Chronicle Flask’s Facebook page for regular updates, or follow @chronicleflask on Twitter. Content is © Kat Day 2020. You may share or link to anything here, but you must reference this site if you do. If you enjoy reading my blog, please consider buying me a coffee through Ko-fi using the button below.
Buy Me a Coffee at ko-fi.com

What is Water? The Element that Became a Compound

November 2018 marks the 235th anniversary of the day when Antoine Lavoisier proved water to be a compound, rather than an element.

I’m a few days late at the time of writing, but November 12th 2018 was the 235th anniversary of an important discovery. It was the day, in 1783, that Antoine Lavoisier formally declared water to be a compound, not an element.

235 years seems like an awfully long time, probably so long ago that no one knew anything very much. Practically still eye of newt, tongue of bat and leeches for everyone, right? Well, not quite. In fact, there was some nifty science and engineering going on at the time. It was the year that Jean-François Pilâtre de Rozier and François Laurent made the first untethered hot air balloon flight, for example. And chemistry was moving on swiftly: lots of elements had been isolated, including oxygen (1771, by Carl Wilhelm Scheele) and hydrogen (officially by Henry Cavendish in 1766, although others had observed it before he did).

Cavendish had reported that hydrogen produced water when it reacted with oxygen (known then as inflammable air and dephlogisticated air, respectively), and others had carried out similar experiments. However, at the time most chemists favoured phlogiston theory (hence the names) and tried to interpret and explain their results accordingly. Phlogiston theory was the idea that anything which burned contained a fire-like element called phlogiston, which was then “lost” when the substance burned and became “dephlogisticated”.

Cavendish, in particular, explained the fact that inflammable air (hydrogen) left droplets of “dew” behind when it burned in “common air” (the stuff in the room) in terms of phlogiston, by suggesting that water was present in each of the two airs before ignition.

Antoine-Laurent Lavoisier proved that water was a compound. (Line engraving by Louis Jean Desire Delaistre, after a design by Julien Leopold Boilly.)

Lavoisier was very much against phlogiston theory. He carried out experiments in closed vessels with enormous precision, going to great lengths to prove that many substances actually became heavier when they burned and not, as phlogiston theory would have it, lighter. In fact, it’s Lavoisier we have to thank for the names “hydrogen” and “oxygen”. Hydrogen is Greek for “water-former”, whilst oxygen means “acid former”.

When, in June 1783, Lavoisier found out about Cavendish’s experiment he immediately reacted oxygen with hydrogen to produce “water in a very pure state” and prove that the mass of the water which formed was equal to the combined masses of the hydrogen and oxygen he started with.

He then went on to decompose water into oxygen and hydrogen by heating a mixture of water and iron filings. The oxygen that formed combined with the iron to form iron oxide, and he collected the hydrogen gas over mercury. Thanks to his careful measurements, Lavoisier was able to demonstrate that the increased mass of the iron filings plus the mass of the collected gas was, again, equal to the mass of the water he had started with.

Water is a compound of hydrogen and oxygen, with the formula H2O.

There were still arguments, of course (there always are), but phlogiston theory was essentially doomed. Water was a compound, made of two elements, and the process of combustion was nothing more mysterious than elements combining in different ways.

As an aside, Scottish chemist Elizabeth Fulhame deserves a mention at this point. Just a few years after Lavoisier she went on to demonstrate through experiment that many oxidation reactions occur only in the presence of water, but the water is regenerated at the end of the reaction. She is credited today as the chemist who invented the concept of catalysis. (Which is a pretty important concept in chemistry, and yet her name never seems to come up…)

Anyway, proving water’s composition becomes a lot simpler when you have a ready supply of electricity. The first scientist to formally demonstrate this was William Nicholson, in 1800. He discovered that when leads from a battery are placed in water, the water breaks up to form hydrogen and oxygen bubbles, which can be collected separately at the submerged ends of the wires. This is the process we now know as electrolysis.

You can easily carry out the electrolysis of water at home.

In fact, this is a really easy (and safe, I promise!) experiment to do yourself, at home. I did it myself, using an empty TicTac box, two drawing pins, a 9V battery and a bit of baking soda (sodium hydrogencarbonate) dissolved in water – you need this because water on its own is a poor conductor.

The drawing pins are pushed through the bottom of the plastic box, the box is filled with the solution, and then it’s balanced on the terminals of the battery. I’ve used some small test tubes here to collect the gases, but you’ll be able to see the bubbles without them.

Bubbles start to appear immediately. I left mine for about an hour and a half, at which point the test tube on the negative terminal (the cathode) was completely full of gas, which produced a very satisfying squeaky pop when I placed it over a flame.

The positive electrode (the anode) ended up completely covered in what I’m pretty sure is a precipitate of iron hydroxide (the drawing pins presumably being plated steel), which meant that very little oxygen was produced after the first couple of minutes. This is why in proper electrolysis experiments inert graphite or, even better, platinum, electrodes are used. If you do that, you’ll get a 1:2 ratio by volume of oxygen to hydrogen, thus proving water’s formula (H2O) as well.

So there we have it: water is a compound, and not an element. And if you’d like to amuse everyone around the Christmas dinner table, you can prove it with a 9V battery and some drawing pins. Just don’t nick the battery out of your little brother’s favourite toy, okay? (Or, if you do, don’t tell him it was my idea.)


Like the Chronicle Flask’s Facebook page for regular updates, or follow @chronicleflask on Twitter. Content is © Kat Day 2018. You may share or link to anything here, but you must reference this site if you do.

If you enjoy reading my blog, please consider buying me a coffee through Ko-fi using the button below.
Buy Me a Coffee at ko-fi.com

Cooking chemistry: American biscuits

American biscuitsIt’s come up before of course, but there’s a lot of chemistry in cooking. I do like tinkering with recipes: all that lovely weighing things on digital scales, measuring liquids, working out ratios and tweaking the exact sequence of steps – what more could a chemist want? I spent ages working on my chocolate brownie recipe when I should have been writing up my PhD thesis (it does produce excellent chocolate brownies, so I maintain it was a entirely valid use of my time).

Last week fate transpired to drop more than one reference to ‘biscuits’ in my lap. Now, these were American sources, so I was aware that they weren’t talking about what we call biscuits (and Americans call cookies), not least because in one of them there was talk of making a ‘biscuit sandwich’ that included sausage. Now, I like a chocolate digestive as much as the next person, but I wouldn’t slap a chunk of grilled pork product in between two of them and call it breakfast.

So I decided to try and find a recipe. And, after a bit of faffing around converting Fahrenheit to Celsius and cups to grams (honestly, I do understand the principle of cups and baking by ratio, but is it really easier to measure out a cup of butter than just use scales?) I finally came up with a workable recipe.

Turns out American biscuits are basically sugar-less scones. Who knew.

What’s the chemistry connection? Well, just like scones, the raising agent in American biscuits is baking soda, or sodium hydrogen carbonate. It causes the mixture to rise because it does this when it’s heated:

2NaHCO3 –> CO2 + H2O + Na2CO3

This type of reaction is called thermal decomposition, because the heat is causing the sodium hydrogen carbonate (NaHCO3) to break apart. The carbon dioxide (CO2) is a gas and produces lots of lovely bubbles that make your finished product nice and light.  Water (H2O) is also a product, which helps to keep everything nice and moist.

This clever bit of cookery chemistry starts to happen slowly at 50 oC, but once you get over 200 oC (a more typical baking temperature) it’s pretty fast. So much so that you can bake your biscuits for just 12 minutes or so and they’ll be perfectly risen. Contrary to common belief, there’s no need to add some kind of acid to the mixture (buttermilk is often mentioned). Acids do react with carbonates to produce carbon dioxide, but there’s no need – heat will do the job for you.

Cheese and ham biscuit sandwichSo without further ado, here’s my tinkered recipe. It’s really great this, it literally only takes 10 minutes plus baking time, and you probably have all these ingredients already:

Ingredients

  • 360 g plain white flour
  • 4 tsp of baking soda (sodium hydrogen carbonate)
  • 1 tsp sugar
  • ½ tsp salt
  • 75 g cold (straight from the fridge) unsalted butter, cut into cubes
  • 230 g* milk

(*If you prefer to use a jug this is as close to 230 ml as makes no difference, since milk is mostly water and water has a density of 1 g/ml, but it saves washing up to just stick the bowl on the scales and weigh it.)

Method

  1. Heat the oven to 230 oC.  It needs to be nice and hot, so turn it on in good time.
  2. Measure the dry ingredients in a large bowl and mix them.
  3. Using clean, cold hands rub the butter into the dry ingredients until the mixture resembles fine breadcrumbs and there are no lumps of butter.
  4. Pour in the milk and mix with the flat of a knife until the dough comes together.
  5. Take the dough out of the bowl and place it on a lightly floured surface. Knead it gently a few times until it forms an even ball and has an elastic, ever so slightly sticky, texture.
  6. Press into a rough oblong, about 2 cm thick.  Cut the dough into six roughly equal pieces (you can use cookie cutters, but again, why create unnecessary washing up).  Place these on a greased baking tray.
  7. Bake for about 12 minutes, until the biscuits are golden brown (the colour is, of course, courtesy of another bit of chemistry: the Maillard reaction).
  8. Transfer them to a rack to cool, but no need to leave them too long – they’re best eaten warm!

Split the biscuits in half and fill them with anything you like, savoury or sweet. They’re delicious served plain with lashings of butter. As a more substantial lunchtime snack, try cheese and ham. Lemon curd has also proved a favourite. If you have leftovers they will keep until the next day if wrapped up, and are especially nice toasted and buttered.

And there you are, a metric version of the classic American biscuit recipe, with a bit of chemistry thrown in. I think this might be a first. Heston eat your heart out.