Let’s change the way we talk about changes

It’s nearly the end of the school year here in the U.K., traditionally a time for reflecting on what’s gone before and planning ahead for the shiny, new September coming in a mere nine weeks (sorry, teachers!). With that in mind, let’s talk about something that comes up early in most chemistry syllabuses, and which bothers me a little more each time I think about it.

Chemical reactions occur when a match burns.

It’s the concept of chemical and physical changes. For those who aren’t familiar, this is the idea that changes we observe happening to matter fall into two, broad categories: chemical changes, where new substances are made, and physical changes, where no new substances are made.

Examples of chemical changes include things like burning a match, cooking an egg, or the reaction between vinegar and baking soda. Physical changes are largely changes of state, such as melting and boiling, but also include changes such as dissolving salt in water, or grinding limestone chips to powder.

So far, so good. Except… then we start to put descriptors on these things. And that’s when the trouble starts.

multiple choice exam questionThe first problem comes with the idea that “chemical changes are irreversible.” This is often taught in early secondary science as a straight-up fact, and is so pervasive that it’s even appeared in multiple choice exam questions, like the one shown here. The student, for the record, was expected to choose option C, “the change is irreversible.”

Except. Argh. I can tell you exactly why the student has opted for D, “the change is reversible,” and it’s not because they haven’t done their revision. Quite the opposite, in fact. No, it’s because this student has learned about weak acids. And in learning about acids, this student met this symbol, ⇌, which literally indicates a reversible chemical reaction.

Yes, that’s right. Not too long after teaching students that chemical reactions are not reversible, we then explicitly teach them that they are. Indeed, this idea of chemical reversibility is such a common one, such an important concept in chemistry, that we even have a symbol for it.

Now, of course, I can explain this. When we say chemical reactions are irreversible, what we mean is “generally irreversible if they’re carried out in an open system.” In other words, when the wood in that match burns out in the open, the carbon dioxide and water vapour that form will escape to the atmosphere, never to return, and it’s impossible to recover the match to its original state.

The problem is that many chemical reactions occur in closed systems, not least a lot of reactions that happen in solution. Hence, the whole acids thing, where we talk about weak acids “partially dissociating” into ions.

Then there’s that entire topic on the Haber process…

Can I be the only one to think that this is rather a lot of nuance to expect teenagers to keep in their head? It’s nothing short of confusing. Should we really be saying one thing in one part of a course, and the literal opposite in another? To be clear, this isn’t even a GCSE vs. A level thing – these ideas appear in the same syllabus.

Melting is a change of state, in this case from (solid) ice to (liquid) water.

All right, okay, let’s move along to the idea that physical changes are reversible. That’s much more straightforward, isn’t it? If I melt some ice, I can re-freeze it again? If I boil some water, I can condense it back into the same volume of liquid… well… I can if I collect all vapour. If I do it in a closed system. The opposite of the condition we imposed on the chemical reactions. Er. Anyway…

We might just about get away with this, if it weren’t for the grinding bit. If physical changes are truly readily reversible, then we ought to be able to take that powder we made from the limestone lumps and make it back into a nice single piece again, right? Right?

See, this is the problem. What this is really all about is entropy, but that’s a fairly tricky concept and one that’s not coming up until A level chemistry.

Okay. Instead of talking about reversible and irreversible, let’s talk about bond-breaking and bond-forming. That’s fine, isn’t it? In chemical changes, bonds are broken and formed (yep) and in physical changes, they aren’t.

Except….

Let’s go back to water for a moment. Water has the formula H2O. It’s made up of molecules where one oxygen atom is chemically bonded to two hydrogen atoms. When we boil water, we don’t break any of those bonds. We don’t form hydrogen and oxygen gas when we boil water; making a hot cup of tea would be a lot more exciting if we did. So we can safely say that boiling water doesn’t involve breaking any bonds, right? We-ell…

Water molecules contain covalent bonds, but the molecules are also joined by (much weaker) hydrogen bonds.

The trouble is that water contains something called hydrogen bonds. We usually do a bit of a fudge here and describe these as “intermolecular forces,” that is, forces of attraction between molecules. This isn’t inaccurate. But the clue is in the name: hydrogen bonds are quite, well, bond-y.

When water boils, hydrogen bonds are disrupted. Although the bonds in individual H2O molecules aren’t broken, the hydrogen bonds are. Which means… bonds are broken. Sort of.

But we’re probably on safe ground if we talk about the formation of new substances. Aren’t we?

Except….

What about dissolving? If I dissolve hydrogen chloride gas, HCl, in water, that’s a physical change, right? I haven’t made anything new? Or… have I? I had molecules with a covalent bond between the hydrogen and the chlorine, and now I have… er… hydrochloric acid (note, that’s a completely different link to the one I used back there), made up of H+ and Cl- ions mingled with water molecules.

So… it’s…. a chemical change? But wait. We could (I don’t recommend it) evaporate all that water away, and we’d have gaseous HCl again. It’s reversible.

Solid iodine is silvery-grey, but iodine vapour is a brilliant violet colour.

Hm. What about the signs that a chemical change is occurring? Surely we’re all right there? Fizzing: that’s a sign of a chemical change. Except… are you sure you know the difference between boiling and fizzing? It’s basically all bubbles, after all. Vapour? But, steam is a vapour, isn’t it? Although, on the other hand, water is a product of several chemical reactions. Colour changes? Check out what happens when you heat a small amount of solid, silvery-grey iodine so that it sublimes (spoiler: there’s a colour change).

Is anyone else really confused by now?

You should be. Your students almost certainly are.

There are, in short, more exceptions to every single one of these rules that there are for that “i before e” thing you learned in English (a rule, incidently, which is particularly galling for scientists who constantly have to deal with weights and heights).

Where do we go from here? I think it’s probably time we asked ourselves why we’re even teaching this concept in the first place. Really, it’s there to get students to think about the difference between changes of state and chemical reactions.

I suspect we need to worry about this rather less than we are: most children are very good at identifying changes of state. They do it instinctively. They only start getting confused about it when we teach them a lot of rules which they then try to apply. I’m pretty sure that’s not the way teaching is supposed to work.

A complicated arrangement of chemical glassware

This could definitely be simpler.

If I had my way, I’d ditch the physical and chemical change labels altogether and, instead, just talk about changes of state and chemical reactions. There is precisely one differentiator between these two, and it is: have we made any new stuff? If the answer is no, it’s a change of state. If the answer is yes, then a chemical reaction has occurred. Job done. (And yes, this would squarely define gaseous hydrogen chloride dissolving in water to form hydrochloric acid as a chemical reaction, and I have no problem at all with that.)

I say we change the way we talk about changes: chemistry has a reputation for being tricky, and this sort of confusing, contradictory thing is part of the reason why.


Like the Chronicle Flask’s Facebook page for regular updates, or follow @chronicleflask on Twitter. Content is © Kat Day 2019. You may share or link to anything here, but you must reference this site if you do. If you enjoy reading my blog, please consider buying me a coffee through Ko-fi using the button below.
Buy Me a Coffee at ko-fi.com

Advertisements

The Chronicles of the Chronicle Flask: 2018

As has become traditional, I’m finishing off this year with a round-up of 2018’s posts. It’s been a good year: a few health scares which turned out to be nothing much to worry about, one which turned out to be a genuine danger, a couple of cool experiments and some spectacular shiny balls. So without further ado, here we go…

Things were a bit hectic at the start of this year (fiction writing was happening) and as a result January was quiet on the blog. But not on the Facebook page, where I posted a couple of general reminders about the silliness of alkaline diets which absolutely exploded, achieving some 4,000 shares and a reach (so Facebook tells me anyway) of over half a million people. Wow. And then I posted a funny thing about laundry symbols which went almost as wild. It’s a strange world.

February featured BPA: an additive in many plastics.

In February I wrote a piece about BPA (Bisphenol A), which was the chemical scare of the day. There’s always one around January/February time. It’s our penance for daring to enjoy Christmas. Anyway, BPA is a chemical in many plastics, and of course plastic waste had become – and remains – a hot topic. BPA is also used in a number of other things, not least the heat sensitive paper used to produce some shopping receipts. It’s not a harmless substance by any means, but it won’t surprise anyone to learn that the risks had, as is usually the case, been massively overstated. In a report, the European Food Safety Authority said that the health concern for BPA is low at their estimated levels of exposure. In other words, unless you’re actually working with it – in which case you should have received safety training – there’s no need to be concerned.

In March I recorded an episode for the A Dash of Science podcast, and I went on to write a post about VARD, which stands for Verify, Author, Reasonableness and Date. It’s my quick and easy way of fact-checking online information – an increasingly important skill these days. Check out the post for more info.

April ended up being all about dairy and vitamin D.

April was all about dairy after a flare-up on Twitter on the topic, and went on to talk about vitamin D. The bottom line is that everyone in the UK should be taking a small vitamin D supplement between about October and March, because northern Europeans simply can’t make vitamin Din their skin during these months (well, unless they travel nearer to the equator), and it’s not a nutrient we can easily get from our food. Are you taking yours?

May featured fish tanks, following a widely reported story about a fish-owner who cleaned out his tank and managed to release a deadly toxin that poisoned his entire family. Whoops. It turns that this was, and is, a real risk – so if you keep fish and you’ve never heard of this before, do have a read!

In June I wrote about strawberries, and did a neat experiment to show that strawberries could be used to make pH indicator. Who knew? You do, now! Check it out if you’re looking for some chemistry to amuse yourself over the holidays (I mean, who isn’t?). Did you know you can make indicators from the leaves of Christmas poinsettia plants, too?

Slime turned up again in July. And December. And will probably keep on rearing its slimy head.

July brought a subject which has turned up again recently: slime. I wrote about slime in 2017, too. It’s the gift that keeps on giving. This time it flared up because the consumer magazine and organisation Which? kept promoting research that, they claimed, showed that slime toys contain dangerous levels of borax. It’s all rather questionable, since it’s not really clear which safety guidelines they’re applying and whether they’re appropriate for slime toys. Plus, the limits that I was able to find are migration limits. In other words, it’s not appropriate to measure the total borax content of the slime and declare it dangerous – they should be looking at the amount of borax which is absorbed during normal use. Unless your child is eating slime (don’t let them do that), they’re never going to absorb enough borax to do them any harm. In other words, it’s a storm in a slimepot.

August was all about carbon dioxide, after a heatwave spread across Europe and there was, bizarrely, a carbon dioxide shortage which had an impact on all sorts of things from fizzy drinks to online shopping deliveries. It ended up being a long-ish post which spanned everything from the formation of the Earth, the discovery of carbon dioxide, fertilisers and environmental concerns.

September featured shiny, silver balls.

In September I turned my attention to a chemical reaction which is still to this day used to coat the inside of glass decorations with a thin layer of reflective silver, and has connections with biochemistry, physics and astronomy. Check it out for some pretty pictures of silver balls, and my silver nitrate-stained fingers.

In October I was lucky enough to go on a ‘fungi forage’ and so, naturally, I ended up writing all about mushrooms. Did you know that a certain type of mushroom can be used to make writing ink? Or that some mushrooms change colour when they’re damaged? No? You should go back and read that post, then! (And going back to April for a moment, certain mushrooms are one of the few sources of vitamin D.)

Finally, November ended up being all about water, marking the 235th anniversary of the day that Antoine Lavoisier formally declared water to be a compound. It went into the history of water, how it was proven to have the formula H2O, and I even did an experiment to split water into hydrogen and oxygen in my kitchen – did you know that was possible? It is!

As December neared, the research for my water piece led me to suggest to Andy Brunning of Compound Interest that this year’s Chemistry Advent might feature scientists from the last 24 decades of chemistry, starting in the 1780s (with Lavoisier and Paulze) and moving forward to the current day. This turned out to be a fantastic project, featuring lots of familiar and not quite so-familiar scientists. Do have a look if you didn’t follow along during December.

And that’s it for this year. I hope it’s been a good one for all my readers, and I wish you peace and prosperity in 2019! Suggestions for the traditional January Health Scare, anyone? (Let’s hope it’s not slime again, I’m getting really tired of that one now…)


Like the Chronicle Flask’s Facebook page for regular updates, or follow @chronicleflask on Twitter. All content is © Kat Day 2018. You may share or link to anything here, but you must reference this site if you do.

If you enjoy reading my blog, please consider buying me a coffee (I promise to use a reusable cup) through Ko-fi using the button below.
Buy Me a Coffee at ko-fi.com

It’s June 8th: please go and vote

Dear non-British readers: apologies, this may not be very relevant to you. But it’s important, so I’m writing it anyway. I’m sure you will forgive me just this once. I promise normal service will resume once all the fun and games are over.

Right, who’s still with me? Brilliant. Here we go.

Thirteen years ago, the late Sir Terry Pratchett wrote in his novel, Going Postal:

“What kind of man would put a known criminal in charge of a major branch of government? Apart from, say, the average voter.”

Like much of his writing, it’s hilarious with an aftertaste of tragic. Because, well, you don’t need me to tell you because. But everyone should read Going Postal, and then its sequel, Making Money (published in 2007 and therefore written before the stock markets crashed) if for no other reason than to marvel at Pratchett’s apparent prescience.

Anyway, why am I bringing this up? I’m bringing this up because it’s election day in the U.K. today – June 8th 2017.

Unlike Pratchett’s fictional Ankh Morpork (where there is famously a “one man, one vote” democracy – Lord Vetinari is the man, and he has the vote) in the U.K. everyone has a vote. Well, more or less. Everyone over the age of 18, who’s previously registered to vote and… (etc). Nearly everyone, anyway. Probably everyone reading this.

But weirdly, a lot of people don’t use that privilege. In 2015 just two thirds of people who were eligible to vote actually went and did it. If all, or even most, of those people voted for one particular party, it actually could change the outcome of an election.

Turnout amongst 18-24 year-olds was particularly low. In 2015 it was 43%, whereas turnout for people over 65 was 78% – approaching double.

And this, if you’ll excuse the phrase, is really arse-backwards, isn’t it? Because it’s those younger people who are going to have to live with the consequences of whatever decision is made for the longest amount of time. They absolutely SHOULD have their say.

So, this is my point: please, GO AND VOTE. I don’t care what you have to say, I just want you to have a say.

And finally, in case it’s helpful, here’s a really quick summary of the key scientific and technology-related policies of the Conservatives, Labour and Liberal Democrats, which I’ve condensed from this page at wired.co.uk (do go and read the whole thing). The party names at the start of each bulletin point link to their respective manifestos:

  • CONSERVATIVES – more spent on research and development, especially batteries and electric vehicles. New police infrastructure to deal with cybercrime. By 2020 every home and business will have high-speed broadband, with 5G rolling out by 2022. There will be new institutes of technology in every major city in England. The UK’s shale gas industry (i.e. fracking) will be developed and legislation created for plans to extract the gas. Emissions will be reduced by 80% (compared to 1990 levels) by 2050.
  • LABOUR – A “science innovation fund” will be created with a specific aim to protect the environment. Labour will “reintroduce effective judicial oversight” of surveillance powers” (i.e. the IP Act). Plans to roll out “universal superfast broadband” by 2022 and create “uninterrupted” 5G coverage. Fracking will be banned, renewable energy technologies will instead be favoured. Air pollution will be addressed by means of a “Clean Air Act”.
  • LIBERAL DEMOCRATS – Will fight to retain academic grants from the EU and protect science budgets. “Supported investment” for energy storage and other technologies. Surveillance powers to be rolled back. All properties in the UK will have 30 Mbps download speed by 2022 and an upload speed of 6 Mbps, with an unlimited usage cap. New centres for innovation will be created. Diesel cars and small vans will be banned from sale by 2025. Will oppose fracking. Greenhouse gas emissions to be reduced by 80% by 2040, net greenhouse gas emissions to be zero 10 years later.

GO AND VOTE (have I already said that?)

See you on the other side. Here’s a picture of a cat. Cats are nice.