The Chronicles of the Chronicle Flask: 2019

Happy New Year, everyone! Usually, I write this post in December but somehow things have got away from me this year, and I find myself in January. Oops. It’s still early enough in the month to get away with a 2019 round-up, isn’t it? I’m sure it is.

It was a fun year, actually. I wrote several posts with International Year of the Periodic table themes, managed to highlight the tragically-overlooked Elizabeth Fulhame, squeezed in something light-hearted about the U.K.’s weird use of metric and imperial units and discovered the recipe for synthetic poo. Enjoy!

Newland’s early table of the elements

January started with a reminder that 2019 had been officially declared The Year of the Periodic Table, marking 150 years since Dmitri Mendeleev discovered the “Periodic System”. The post included a quick summary of his work, and of course mentioned the last four elements to be officially named: nihonium (113), moscovium (115), tennessine (117) and oganesson (118). Yes, despite what oh-so-many periodic tables still in widespread use suggest (sort it out in 2020, exam boards, please), period 7 is complete, all the elements have been confirmed, and they all have ‘proper’ names.

February featured a post about ruthenium. Its atomic number being not at all significant (there might be a post about rhodium in 2020 šŸ˜‰). Ruthenium and its compounds have lots of uses, including cancer treatments, catalysis, and exposing latent fingerprints in forensic investigations.

March‘s entry was all about a little-known female chemist called Elisabeth Fulhame. She only discovered catalysis. Hardly a significant contribution to the subject. You can’t really blame all those (cough, largely male, cough) chemists for entirely ignoring her work and giving the credit to Berzelius. Ridiculous to even suggest it.

An atom of Mendeleevium, atomic number 101

April summarised the results of the Element Tales Twitter game started by Mark Lorch, in which chemists all over Twitter tried to connect all the elements in one, long chain. It was great fun, and threw up some fascinating element facts and stories. One of my favourites was Mark telling us that when he cleared out his Grandpa’s flat he discovered half a kilogram of sodium metal as well as potassium cyanide and concentrated hydrochloric acid. Fortunately, he managed to stop his family throwing it all down the sink (phew).

May‘s post was written with the help of the lovely Kit Chapman, and was a little trot through the discoveries of five elements: carbon, zinc, helium, francium and tennessine, making the point that elements are never truly discovered by a single person, no matter what the internet (and indeed, books) might tell you.

In June I wrote about something that had been bothering me a while: the concept of describing processes as “chemical” and “physical” changes. It still bothers me. The arguments continue…

In July I came across a linden tree in a local park, and it smelled absolutely delightful. So I wrote about it. Turns out, the flowers contain one of my all-time favourite chemicals (at least in terms of smell): benzaldehyde. As always, natural substances are stuffed full of chemicals, and anyone suggesting otherwise is at best misinformed, at worst outright lying.

Britain loves inches.

In August I wrote about the UK’s unlikely system of units, explaining (for a given value of “explaining”) our weird mishmash of metric and imperial units. As I said to a confused American just the other day, the UK is not on the metric system. The UK occasionally brushes fingers with the metric system, and then immediately denies that it wants anything to do with that sort of thing, thank you very much. This was my favourite post of the year and was in no way inspired by my obsession with the TV adaptation of Good Omens (it was).

In September I returned to one of my favourite targets: quackery. This time it was amber teething necklaces. These are supposed to work (hmm) by releasing succinic acid from the amber beads into the baby’s skin where it… soothes the baby by… some unexplained mechanism. They don’t work and they’re a genuine choking hazard. Don’t waste your money.

October featured a post explaining why refilling plastic bottles might not be quite as simple as you thought. Sure, we all need to cut down on plastic use, but there are good reasons why shops have rules about what you can, and can’t, refill — and they’re not to do with selling more bottles.

November continued the environmental theme with a post was all about some new research into super-slippery coatings that might be applied to all sorts of surfaces, not least ceramic toilet bowls, with the goal of saving some of the water that’s currently used to rinse and clean such surfaces. The best bit about this was that I discovered that synthetic poo is a thing, and that the recipe includes miso. Yummy.

Which brings us to… December, in which I described some simple, minimal-equipment electrolysis experiments that Louise Herbert from STEM Learning had tested out during some teaching training exercises. Got a tic tac box, some drawing pins and a 9V battery? Give it a go!

Well, there we have it. That’s 2019 done and dusted. It’s been fun! I wonder what sort of health scares will turn up for “guilty January”? Won’t be long now…


Like the Chronicle Flask’s Facebook page for regular updates, or follow @chronicleflask on Twitter. Content is Ā© Kat Day 2020. You may share or link to anything here, but you must reference this site if you do. If you enjoy reading my blog, please consider buying me a coffee through Ko-fi using the button below.
Buy Me a Coffee at ko-fi.com

Remarkable, reticent ruthenium

Ruthenium is rare transition metal belonging to the platinum group of elements

What shall I write about this week, I wonder… how about, apropos of nothing, the element ruthenium? It is the International Year of the Periodic Table after all; there have to be some element-themed posts, right?

Ruthenium has the atomic number 44 (good number, that) and the symbol Ru. It was officially discovered by Karl Ernst Klaus in 1844 (there it is again) atĀ Kazan State University in Russia.

You might remember from school (or possibly from your jewellery) that platinum is really unreactive. What has this got to do with ruthenium? Well, unreactive metals can be found in nature as actual metal, rather than combined with other elements in ores. But it turns out that early “platinum metal” — used by pre-Columbian Americans — wasn’t pure, but was in fact an alloy of platinum with other metals.

Gottfried Osann discovered ruthenium before Klaus, but gave up his claim.

In 1827 Jƶns BerzeliusĀ andĀ Gottfried Osann dissolved crude platinum from the Ural Mountains in aqua regia: a 1:3 mixture of nitric acid and hydrochloric acid (we’ve met aqua regia before, in a famous story about Nobel Prize medals). Osann was certain that he’d isolated three new metals, which he named pluranium, ruthenium, and polinium, but Berzelius disagreed, and this caused a long-running dispute between the two scientists.

Osann eventually gave up the argument — which was a shame, because he was right. In 1844 Karl Ernst Klaus analysed the compounds prepared by Osann and showed that they did, in fact, contain ruthenium.

Klaus had been studying the insoluble residues left over after platinum extraction from Ural placer deposits. Like many chemists at the time, he tasted and smelled the substances he prepared, and he reported that theĀ ammines of ruthenium had a more caustic taste than alkalis, while the taste of osmium tetroxide was ā€œacute pepper-likeā€ (do not try this at home).

He communicated his discoveries to the Academy of Sciences at St. Petersburg and to Academician G. I. Gess, who reported them on September 13th and October 25th, 1844. Klaus named the new element from the Latin word,Ā Ruthenia, and mentioned Osann’s work, saying:

ā€œI named the new body, in honour of my Motherland, ruthenium. I had every right to call it by this name because Mr. Osann relinquished his ruthenium and the word does not yet exist in chemistryā€

ruthenium chloride is sometimes shown as red, but it’s actually black

Klaus died of pneumonia in 1864, and the study of ruthenium in Russia more or less stopped for the best part of seventy years, not restarting until the 1930s. The element is now known to harden platinum and palladium alloys, and is used in electrical contacts as a result. When just 0.1% is added to titanium it forms an extremely corrosion-resistant alloy which is particularly useful in seawater environments.

Ruthenium and its compounds have lots of other uses, too, including cancer treatments and in catalysis. Ruthenium(VIII) oxide, a colourless liquid (just: its melting point is 25 oC) forms brown-black ruthenium dioxide in contact with fatty oils; because of this property it’s used in forensics to expose latent fingerprints.

This Swarovski necklace has been plated with ruthenium

One of the most vibrant ruthenium compounds is the dye, ā€œruthenium redā€, which has been used as a biological stain for over 100 years. It has the complicated formula [Ru3O2(NH3)14]Cl6 and is made by reacting ruthenium trichloride with ammonia in air, which might explain why pictures of ruthenium trichloride sometimes show a red substance, when it’s actually a rather boring black.

One place where you might have come across ruthenium in everyday life is jewellery: the metal’s hardness, high corrosion resistance and unusual, not-quite-metallic grey-black finish make it popular choice. Pure ruthenium is expensive though, so it’s almost always plated onto a cheaper base metal.

And now, one last picture to mark my ruthenium-day: check out my fabulous chemistry-themed birthday cake (thanks, Mum!), made by the Cotswold Cake Room. How amazing is this?

Normally at the end of my blog posts I link to my ko-fi account, but this time, instead, if you’re feeling generous please consider donating to my birthday fundraiser to raise money for Alzheimer’s Research UK.

The fundraiser is running through Facebook, which I appreciate doesn’t suit everyone — if you’d like to donate without going via that particular social network, there’s a link to donate directly here. Do drop me a comment below if you do, so that I can say thank you x


Like the Chronicle Flask’s Facebook page for regular updates, or follow @chronicleflask on Twitter. Content is Ā© Kat Day 2019. You may share or link to anything here, but you must reference this site if you do.