Easy Indicators

Indicator rainbow, reproduced with kind permission of Isobel Everest, @CrocodileChemi1

Recently on Twitter CrocodileChemist (aka Isobel Everest), a senior school science technician (shout out to science technicians, you’re all amazing) shared a fabulous video and photo of a “pH rainbow”.

The effect was achieved by combining various substances with different pH indicators, that is, substances that change colour when mixed with acids or alkalis.

Now, this is completely awesome, but, not something most people could easily reproduce at home, on account of their not having methyl orange or bromothymol blue, or a few other things (that said, if you did want to try, Isobel’s full method, and other indicator art, can be found here).

But fear not, I’ve got this. Well, I’ve got a really, really simple version. Well, actually, I’ve got more of an experiment, but you could make it into more of a rainbow if you wanted. Anyway…

This is what you need:

  • some red cabbage (one leaf is enough)
  • boiling water
  • mug
  • white plate, or laminated piece of white card, or white paper in a punched pocket
  • cling film/clear plastic wrap (if you’re using a plate)
  • mixture of household substances (see below)
  • board marker (optional) or pen
  • plastic pipettes (optional, but do make it easier – easily bought online)

First, make the indicator. There are recipes online, but some of them are over-complicated. All you really need to do is finely chop the red cabbage leaf, put it in a mug, and pour boiling water over it. Leave it to steep and cool down. Don’t accidentally drink it thinking it’s your coffee. Pour off the liquid. Done.

If you use a plate, cover it with cling film

Next, if you’re using a plate, cover it with cling film. There are two reasons for this: firstly, cling film is more hydrophobic (water-repelling) than most well-washed ceramic plates, so you’ll get better droplets. Secondly, if you write on a china plate with a board marker it doesn’t always wash off. Ask me how I know.

Next step: hunt down some household chemicals. I managed to track down oven cleaner, plughole sanitiser, washing up liquid, lemon juice, vinegar, limescale remover and toilet cleaner (note: not bleach – don’t confuse these two substances, one is acid, one is alkali, and they must never be mixed).

Label your plate/laminated card/paper in punched pocket with the names of the household substances.

Place a drop of cabbage indicator by each label. Keep them well spaced so they don’t run into each other. Also, at this stage, keep them fairly small. Leave one alone as a ‘control’. On my plate, it’s in the middle.

Add a drop of each of your household substances and observe the colours!

Red cabbage indicator with various household substances

IMPORTANT SAFETY NOTE: some of these substances are corrosive. The risk is small because you’re only using drops, but if working with children, make sure an adult keeps control of the bottles, and they only have access to a tiny amount. Drip the more caustic substances yourself. Take the opportunity to point out and explain hazard warning labels. Use the same precautions you would use when handling the substance normally, i.e. if you’d usually wear gloves to pick up the bottle, wear gloves. Some of these substances absolutely must not be mixed with each other: keep them all separate.

Here’s a quick summary of what I used:

A useful point to make here is that pH depends on the concentration of hydrogen ions (H+) in the solution. The more hydrogen ions, the more acidic the solution is. In fact, pH is a log scale, which means a change of x10 in hydrogen concentration corresponds to a change of one pH point. In short, the pH of a substance changes with dilution.

Compound Interest’s Cabbage Indicator page (click image for more info)

Which means that if you add enough water to acid, the pH goes up. So, for example, although the pH of pure ethanoic acid is more like 2.4, a dilute vinegar solution is probably closer to 3, or even a bit higher.

Compound Interest, as is usually the case, has a lovely graphic featuring red cabbage indicator. You can see that the colours correspond fairly well, although it does look like my oven cleaner is less alkaline (closer to green) than the plughole sanitiser (closer to yellow).

As the Compound Interest graphic mentions, the colour changes are due to anthocyanin pigments. These are red/blue/purple pigments that occur naturally in plants, and give them a few advantages, one of which is to act as a visual ripeness indicator. For example, the riper a blackberry is, the darker it becomes. That makes it stand out against green foliage, so it’s easier for birds and animals to find it, eat it and go on to spread the seeds. Note that “unripe” colours, yellow-green, are at the alkaline end, which corresponds to bitter flavours. “Ripe” colours, purple-red, are neutral to acidic, corresponding with much more appealing sweet and tart flavours. Isn’t nature clever?

You can make a whole mug full of indicator from a single cabbage leaf (don’t drink it by mistake).

Which brings me to my final point – what if you can’t get red cabbage? Supermarkets are bit… tricky at the moment, after all. Well, try with some other things! Any dark-coloured plant/fruit should work. Blueberries are good (and easy to find frozen). The skins of black grapes or the very dark red bit of a rhubarb stalk are worth a try. Blackberries grow wild in lots of places later in the year. Tomatoes, strawberries and other red fruits will also give colour changes (I’ve talked about strawberries before), although they’re less dramatic.

For those (rightly) concerned about wasting food – you don’t need a lot. I made a whole mug full of cabbage indicator from a single cabbage leaf, and it was the manky brown-around-the-edges one on the outside that was probably destined for compost anyway.

So, off you go, have fun! Stay indoors, learn about indicators, and stay safe.

EDIT: after I posted this, a few people tried some more experiments with fruits, vegetables and plants! Beaulieu Biology posted the amazing grid below, which includes everything from turmeric to radishes:

Image reproduced with kind permission of Beaulieu Biology (click for larger version)

And Compound Interest took some beautiful photos of indicator solutions extracted from a tulip flower, while CrocodileChemist did something similar and used the solutions to make a gorgeous picture of a tree. Check them out!


If you’re studying from home, have you got your Pocket Chemist yet? Why not grab one? It’s a hugely useful tool, and by buying one you’ll be supporting this site – it’s win-win!

Want something non-sciency to distract you? Why not check out my fiction blog: the fiction phial. There are loads of short stories, and even (recently) a couple of poems. Enjoy!

Like the Chronicle Flask’s Facebook page for regular updates, or follow @chronicleflask on Twitter. Content is © Kat Day 2020. You may share or link to anything here, but you must reference this site if you do. If you enjoy reading my blog, please consider buying me a coffee through Ko-fi using the button below.
Buy Me a Coffee at ko-fi.com

In the fridge or on the windowsill: where’s the best place to keep tomatoes?

Fresh fruit and vegetables are great, but where’s the best place to store them?

I’ve mentioned before that my Dad is a professional plant-wrangler (if you’ve never read the electric daisies post, do go and have a look – it’s a little-read favourite) and he often brings me home-grown fruit and vegetables.

What follows is an inevitable disagreement about storage, specifically, my habit of putting everything in the fridge.

In my defence, modern houses rarely have pantries (boo) and we don’t even have a garage. We do have a shed, but it’s at the bottom of our poorly-lit, somewhat muddy garden. Do I want to traipse out there on a cold, dark, autumn evening? No, I do not. So the fabled “cool, dark place” is a bit of problem. My fridge is cool and dark, I have argued, but here’s the thing – turns out, it’s too cool. And quite probably too dark.

This I have learned from the botanist James Wong (@botanygeek on Twitter), whose talk I attended on Monday this week at the Mathematical Institute in Oxford. James, it turns out, had a rather similar argument with his Mum, particularly regarding tomatoes.

We should’ve listened to out parents, because they were right. A lot of fruit and vegetables really are better stored outside of the fridge, and for tomatoes in particular “better” actually means “more nutritious”.

Lycopene is a very long molecule with lots of double C=C bonds.

Tomatoes, James explained, contain a lot of a chemical called lycopene. It’s a carotene pigment, and it’s what gives tomatoes their red colour.

Lycopene has lots of double bonds between its carbon atoms which form something chemists call a conjugated system. This has some rather cool properties, one of which is an ability to absorb certain wavelengths of light. Lycopene is especially good at absorbing blue and green wavelengths, leaving our eyes to detect the red light that’s left.

Lycopene absorbs blue and green light, which is why tomatoes appear red.

Tomatoes and lycopene also seem to have a lot of health benefits. There’s some evidence that lycopene might reduce the risk of prostate and other cancers. It also appears to reduce the risk of stroke, and eating tomato concentrate might even help to protect your skin from sun damage (don’t get any ideas, you still need sunblock). Admittedly the evidence is currently a bit shaky – it’s a case of “more research is needed” – but even if it turns out to that the causative relationship isn’t terribly strong, tomatoes are still a really good source of fibre and vitamins A, C and E. Plus, you know, they taste yummy!

But back to the fridge. Surely they will keep longer in the fridge, and the low temperatures will help to preserve the nutrients? Isn’t that how it works?

Well, no. As James explained, once tomatoes are severed from the plant they have exactly one purpose: to get eaten. The reason, from the plant’s point of view, is that the critter which eats them will hopefully wander off and – ahem – eliminate the tomato seeds at a later time, somewhere away from the parent plant. This spreads the seeds far and wide, allowing little baby tomato plants to grow in a nice, open space with lots of water and sun.

For this reason once the tomato fruit falls, or is cut, from the tomato plant it doesn’t just sit there doing nothing. No, it carries on producing lycopene. Or rather, it does if the temperature is above about 10 oC. Below that temperature (as in a fridge), everything more or less stops. But, leave a tomato at room temperature and lycopene levels increase significantly. Plus, the tomato pumps out extra volatile compounds – both as an insect repellant and to attract animals which might usefully eat it – which means… yes: room temperature tomatoes really do smell better. As if that weren’t enough, chilling tomatoes can damage cell membranes, which can actually cause them to spoil more quickly.

In summary, not only will tomatoes last longer out of the fridge, they will actually contain more healthy lycopene!

Anecdotally, once I got over my scepticism and actually started leaving my tomatoes on my windowsill (after years of refrigeration) I discovered that it’s true. My windowsill tomatoes really do seem to last longer than they used to in the fridge, and they almost never go mouldy. Of course, it’s possible that I might not be comparing like for like (who knows what variety of tomato I bought last year compared to this week), but I urge you to try it for yourself.

James mentioned lots of other interesting bits and pieces in his talk. Did you know that sun-dried shiitake mushrooms are much higher in vitamin D? Or that you can double the amount of flavonoid you absorb from your blueberries by cooking them? (Take that, raw food people!) Storing apples on your windowsill is likely to increase the amount of healthy polyphenols in their skin, red peppers are better for you than green ones, adding mustard to cooked broccoli makes it more nutritious, and it would be much better if we bought our butternut squash in the autumn and saved it for Christmas – it becomes sweeter and more flavoursome over time.

In short, fascinating. Who wants to listen to some “clean eater” making it up as they go along when you can listen to a fully-qualified botanist who really knows what he’s talking about? Do check out the book, How to Eat Better, by James Wong – it’s packed full of brilliant tidbits like this and has loads of recipes.

And yes, Dad: you were right.


Like the Chronicle Flask’s Facebook page for regular updates, or follow @chronicleflask on Twitter. All content is © Kat Day 2017. You may share or link to anything here, but you must reference this site if you do.


All comments are moderated. Abusive comments will be deleted, as will any comments referring to posts on this site which have had comments disabled.