Rock bottom: can rocks in your dog’s water bowl protect your lawn?

fractal image, featuring the hashtag #272sci

Take a look at the Twitter hashtag #272sci

One quick thing before I dive into this month’s post: if you’re a Twitter user, check out my series of very tiny science tweets under the hashtag #272sci. The aim is to explain a science thing in one tweet – without using a thread – and it’s 272 because that’s the number of characters I have to use after including the hashtag and a space. So far I’ve covered leaf colours, frothy milk, caffeine and poisonous millipedes. There will be more to come!

Now, speaking of Twitter, a couple of weeks ago Prof Mark Lorch tweeted about Dog Rocks. Dog… what? I hear you ask (really quite understandably).

Well, it turns out that Dog Rocks are a product that you can buy, and that you put into your dog’s water bowl. Your dog then drinks the water that has been sloshing over the rocks, and, this is where we start to run into trouble, this is meant to have an effect on your dog’s urine. This, in turn, is supposed to protect any grass your dog might then pee on.

photo of a patch of dead grass

Dog urine damages grass

All right, so let’s start somewhere in the vague vicinity of some science: if you have a dog, or even if you’ve just spent some time with someone who has a dog, you’ve probably noticed that dog urine isn’t very kind to grass. Commonly, you see something like the photo here, that is, patches of yellow, dead grass, surrounded by quite luscious green growth.

Why is this? It’s because dog urine – like the urine of all mammals – contains urea, CO(NH2)2. Urea forms in the body when animals metabolise nitrogen-containing compounds, in particular, proteins. It’s essentially a way for the body to get rid of excess nitrogen.

People sometimes confuse urea with ammonia, for reasons that I’ll come to in a moment. But they’re not the same thing. Urea is odourless, forms a pH neutral solution and, if you extract it from the liquid in which it is dissolved, produces solid crystals at room temperature.

Pure ammonia, NH3, by contrast, is a gas at room temperature (boiling point -33.3 ℃), forms alkaline solutions (with pH values greater than 7) and has that pungent ‘ngggh get it away from me!’ smell with which we’re probably all familiar.

Sample pots full of pale yellow liquid

Fresh urine contains urea, but little ammonia

Although these two substances aren’t the same, they are linked: many living things convert ammonia (which is very toxic) to urea (which is much less so) as part of normal metabolism. And it also goes the other way, in a process called urea hydrolysis. This reaction happens in urine once it’s out of the body, too, which is the main reason why, after a little while, urine starts to smell really, really bad.

Okay, fine, but what has this got to do with grass, exactly? Well urea (and ammonia, for that matter) are excellent sources of nitrogen. Plants need nitrogen to grow, but dog urine contains too much, and too much nitrogen is bad – in the same way that too much of pretty much anything nice is bad for humans. It damages the blades of grass and a yellowish dead spot appears, often ringed by some particularly lush grass that, being slightly outside the immediate target zone, caught a whiff of extra nitrogen without being overwhelmed.

Back to Dog Rocks. Interestingly, the website includes an explanation not unlike the one I’ve just given on their fact sheet. What it doesn’t do is satisfactorily explain how Dog Rocks are supposed to change the nitrogen content of your dog’s urine.

photo of a dog drinking water

Dog Rocks are meant to be placed in your dog’s water bowl

The website says that Dog Rocks are “a coherent rock with a mechanically stable framework”. Okay… so… Dog Rocks won’t dissolve or break up in your dog’s water bowl. A good start. It goes on to say, “the rocks provide a stable matrix and a micro-porous medium in which active components are able to act as a water purifying agent through ion exchange” and “Dog Rocks will help purify the water by removing some nitrates, ammonia and harmful trace elements thereby giving your dog a cleaner source of water and lowering the amount of nitrates found in their diet.”

You’ll note they’re using the word nitrate. Nitrates are specifically compounds containing the NO3 ion, but I think they’re using the term in a more general way, to suggest any nitrogen-containing compound (including urea and ammonia). And by the way, nitrates are different from the similar-sounding nitrites, which contain the NO2 ion. Fresh urine from a healthy dog (or human, for that matter) shouldn’t contain nitrite. In fact, a dipstick test for nitrite in urine is commonly used to check for urinary tract infections, because it suggests bacteria are present.

Anyway, nitrates/nitrites aside, it’s the last bit of that claim which really makes no sense. Your dog is not ingesting anything like a significant quantity of nitrogen-containing compounds from its water bowl. Urea comes from the metabolic breakdown of proteins, and they come from your dog’s food.

Photo of puppies eating food that I totally picked because it's cute ;-)

The nitrogen-containing compounds in your dogs’ urine come from their food, not their water

It’s faintly possible, I suppose, that Dog Rocks might somehow filter out some urea/nitrates from urine. But then your dog would have to pee through the Dog Rocks and, honestly, if you can manage to arrange that, you might as well train your dog not to pee on your grass in the first place.

I suggest that there are three possible explanations for the positive testimonials for this product. 1) Owners who use it are inadvertently encouraging their dogs to drink more water, which could be diluting their urine, leading to less grass damage. 2) It’s all a sort of placebo effect: owners imagine it’s going to work, and they see what they’re expecting to see, or 3) they’re all made up.

You decide, but there is absolutely no scientifically-plausible way that putting any kind of rocks in your dog’s water bowl will do anything to stop dog pee damaging your grass. This is £15 you do not need to spend. But hey, you could avoid the money burning a hole in your pocket (see what I did there?) by buying me a coffee… 😉


Check out the Twitter hashtag #272sci here, and support the Great Explanations book project here!

Do you want something non-sciency to distract you from, well, everything? Why not take a look at my fiction blog: the fiction phial? You can also find me doing various flavours of editor-type-stuff at the horror podcast, PseudoPod.org – so head over there, too!

Like the Chronicle Flask’s Facebook page for regular updates, or follow @chronicleflask on Twitter. Content is © Kat Day 2021. You may share or link to anything here, but you must reference this site if you do. You can support my writing my buying a super-handy Pocket Chemist from Genius Lab Gear using the code FLASK15 at checkout (you’ll get a discount, too!) or by buying me a coffee – just hit this button:
Buy Me a Coffee at ko-fi.com

 

Is acrylamide in your toast really going to give you cancer?

Acrylamide has been in the news today, and this might be the understatement of the year. Front page newspaper headlines have been yelling everything from “Brits officially warned off chips” to “Over-cooked potatoes and burnt toast could cause cancer” to the marginally more restrained “What is the real cancer risk from eating roast potatoes or toast?” All this has been accompanied by radio interviews with everyone from actual scientists to professional chefs to people keen to share their roast potato recipes. I expect there have been television interviews too – I haven’t had a chance to watch.

Hey, what could be more traditional, or more fun, than a food-health scare in January?

Acrylamide

Acrylamide

Never fear, the Chronicle Flask is here to sort out the science. Let’s get to the facts: what is acrylamide?

It’s actually a rather small molecule, and it falls into a group of substances which chemists call amides. Other well-known amides include paracetamol and penicillin, and nylon is a polyamide – that is, lots of amide molecules joined together. Amide linkages (the CO-NH bit) are a key feature of proteins, which means they appear in all kinds of naturally-occurring substances.

And this is where the food-acrylamide link comes in. Because acrylamide, or prop-2-enamide to give it its official name (the one only ever used by A-level chemistry students), forms when certain foods are cooked.

Acrylamide occurs naturally in fried, baked, and roasted starchy foods.

Acrylamide occurs naturally in fried, baked, and roasted starchy foods.

It begins with an amino acid called asparagine. If you’re wondering whether, with that name, it has anything to do with asparagus, you’d be on the right track. It was first isolated in the early 1800s from asparagus juice. It turns out to be very common: it’s found in dairy, meat, fish and shellfish, as well as potatoes, nuts, seeds and grains, amongst other things.

This is where the trouble begins. When asparagine is combined with sugars, particularly glucose, and heated, acrylamide is produced. The longer the food is heated for, the more acrylamide forms. This is a particular issue with anything wheat or potato-based thanks to the naturally-occurring sugars those foods also contain – hence all the histrionics over chips, roast potatoes and toast.

How dangerous is acrylamide? The International Agency for Research on Cancer have classified it as a Group 2A carcinogen, or a “probable” carcinogen. This means there’s “limited evidence” of carcinogenicity in humans, but “sufficient evidence” of carcinogenicity in experimental animals. In other words (usually) scientists know the thing in question causes cancer in rats – who’ve generally been fed huge amounts under strictly controlled conditions – but there isn’t any clear evidence that the same link exists in humans. It’s generally considered unethical to lock humans in cages and force feed them acrylamide by the kilo, so it’s tricky to prove.

screen-shot-2017-01-23-at-22-10-46At this point I will point out that alcoholic beverages are classified as Group 1 carcinogens, which means there is “sufficient evidence” of carcinogenicity in humans. Alcohol definitely causes cancer. If you’re genuinely concerned about your cancer risk, worry less about the roast potatoes in your Sunday roast and more about the glass of wine you’re drinking with them.

But back to acrylamide. In animals, it has been shown to cause tumours. It’s one of those substances which can be absorbed through the skin, and after exposure it spreads around the body, turning up in the blood, unexposed skin, the kidneys, the liver and so on. It’s also been shown to have neurotoxic effects in humans. BUT, the evidence that it causes cancer in humans under normal conditions isn’t conclusive. A meta-analysis published in 2014 concluded that “dietary acrylamide is not related to the risk of most common cancers. A modest association for kidney cancer, and for endometrial and ovarian cancers in never smokers only, cannot be excluded.” 

The dose makes the poison is an important principle in toxicology (image credit: Lindsay Labahn)

The dose makes the poison (image credit: Lindsay Labahn)

As I so often find myself saying in pieces like this: the dose makes the poison. The people who have suffered neurotoxic effects from acrylamide have been factory workers. In one case in the 1960s a patient was handling 10% solutions of the stuff, and “acknowledged that the acrylamide solution frequently had splashed on his unprotected hands, forearms and face.” The earliest symptom was contact dermatitis, followed by fatigue, weight loss and nerve damage.

Because of these very real risks, the Occupational Safety and Health Administration and the National Institute for Occupational Safety and Health have set occupational exposure limits at 0.03 mg/m3 over an eight-hour workday, or 0.00003 g/m3.

Let’s contrast that to the amount of acrylamide found in cooked food. The reason all this fuss erupted today is that the Food Standards Agency (FSA) published some work which estimated the amounts of acrylamide people are likely to be exposed to in their everyday diet.

The highest concentrations of acrylamide were found in snacks (potato crisps etc), and they were 360 μg/kg, or 0.00036 g/kg or, since even the most ardent crisp addict doesn’t usually consume their favoured snacks by the kilo, 0.000036 g/100g. (Remember that those occupational limits are based on continuous exposure over an eight-hour period.)

In other words, the amounts in even the most acrylamide-y of foodstuffs are really quite tiny, and the evidence that acrylamide causes cancer in humans is very limited anyway. There is some evidence that acrylamide accumulates in the body, though, so consuming these sorts of foods day in and day out over a lifetime could be a concern. It might be wise to think twice about eating burnt toast every day for breakfast.

Oh yes, and there’s quite a lot of acrylamide in cigarette smoke. But somehow I doubt that if you’re a dedicated smoker this particular piece of information is going to make much difference.

As the FSA say at the end of their report:

Your toast almost certainly isn't going to kill you.

Your toast almost certainly isn’t going to kill you.

“The dietary acrylamide exposure levels for all age classes are of possible concern for an increased lifetime risk of cancer. The results of the survey do not increase concern with respect to acrylamide in the UK diet but do reinforce FSA advice to consumers and our efforts to support the food industry in reducing acrylamide levels.”

This is not, I would suggest, QUITE the same as “Crunchy toast could give you cancer, FSA warns” but, I suppose, “FSA says risk hasn’t really changed” wouldn’t sell as many newspapers.

One last thing, there’s acrylamide in coffee – it forms when the beans are roasted. There’s more in instant coffee and, perhaps counterintuitively, in lighter-roasted beans. No one seems to have mentioned that today, possibly because having your coffee taken away in January is just too terrifying a prospect to even contemplate. And also perhaps because coffee seems to be associated with more health benefits than negatives. Coffee drinkers are less likely to develop type 2 diabetes, Parkinson’s disease, dementia, suffer fewer cases of some cancers and fewer incidences of stroke. Whether the link is causal or not isn’t clear, but coffee drinking certainly doesn’t seem to be a particularly bad thing, which just goes to show that when it comes to diet, things are rarely clearcut.

Pass the crisps, someone.


Like the Chronicle Flask’s Facebook page for regular updates, or follow @chronicleflask on Twitter. In need of a groovy new mug for your oh-so-healthy coffee? Check out this page.


All comments are moderated. Abusive comments will be deleted, as will any comments referring to posts on this site which have had comments disabled.