Unsafe slime? How bad is borax, really?

Slime is a fun bit of chemistry that anyone can do – but how safe is it?

It’s August, which means it’s the school summer holidays in the UK and, as is traditional, it’s been pouring with rain. This has left many a cabin-fevered child searching for ways to amuse themselves.

Start hunting around the internet for things to do and it’s not long before the concept of the “kitchen science” experiment turns up. There are actually loads of these, and it’s even possible to do some of them without permanently damaging anyone’s eardrums, dusting every surface with cornflour and leaving a parent rocking in the corner muttering “why did I encourage this?” over and over to themselves.

Which brings me to slime – surely the go-to fun science experiment. What’s not to love about taking some of that white, runny PVA glue found in gallon bottles in school classrooms everywhere and magically turning it into glorious, gloopy slime? Add some food colouring and you can even have coloured slime! Add glitter and… well you get the idea.

Many YouTubers love this stuff. A quick search for “make your own slime” turns up pages and pages of videos, giving instructions as to how to do just that.

In fact, it seems that slime-making is currently a bit of a craze, with children all over the world making all kids of different types. There’s unicorn slime, rainbow slime, fluffy slime – you name it. Brilliant, you might think, a whole generation of youngsters interested in chemistry. What’s not to like about that?

Well, as a few news reports have recently pointed out, there might be a problem if children are handling lots of borax, or certain other chemicals.

Polyvinyl alcohol

Slime, you see, is a really nice example of polymerisation – the same process that goes on when plastics are made. PVA glue, the usual starting material, is a polymer itself. The letters PVA stand for polyvinyl alcohol (its systematic name is poly(1-hydroxyethylene)), but literally no one calls it that, not even A-level chemistry teachers forced, kicking and screaming, to follow IUPAC naming conventions).

PVA is a long chain of carbon atoms with alternating CH2 groups and alcohol, OH, groups. As anyone who’s ever handled it will know, it’s quite runny. Thick, yes, but still runny. Basically, it’s a liquid.

But if you mix it with borax, aka sodium tetraborate, some magic happens. And when I say magic, I mean chemistry. The chains of atoms become linked together (essentially via hydrogen bonds), and as a result the new substance is a lot more solid. But it’s not quite solid. At least, not in the sense of something that keeps its own shape. No, this is weird, peculiar, stuff that sits somewhere in between solid and liquid.

Borax joins the chains of PVA together.

There’s something tactilely pleasing about slime. Put it in your hands and it feels cool and slightly moist – your fingers slide over and through it with a sort of squeaky sensation. Leave it alone for a few minutes and it flows to take the shape of its container, forming a perfect, mirror finish on its surface. Tip the pot over, and it will gradually creep toward the edge.

It is safe to handle. Here are my hands, handling it (we made this at the March for Science in Bristol back in April). You will notice that my skin is not falling off.

It’s white unless you dye it. We went for red, which is pleasingly disturbing.

I did, though, wash my hands after I took that photo. And that’s because, while the PVA is pretty harmless (as you know if, like me, you spent your primary school days painting your hands with glue just so you could peel it off later) the borax isn’t. At least, not entirely.

Before I go any further, let’s be clear: lots of things aren’t “entirely” safe. Most of the cleaning products in the average kitchen and bathroom have warning levels of varying degrees of severity on them, and we don’t think too much about it. Even things that are designed to be in contact with skin, like hand soap and shampoo, usually have warnings about eye irritation and statements like “if irritation occurs, discontinue use”. Even water is deadly in the wrong context (don’t try inhaling too much of it, for example). So when I say not entirely safe, I don’t mean to suggest that panic needs to ensue if your child has so much as looked at a borax solution.

Borax has traditionally been used in several household products, although admittedly more in the US than in the UK. Most people know it as a laundry additive, where it softens water, brightens whites and inhibits the growth of the bacteria and fungi which can make clothes stinky.

It’s not considered a lethal compound, in the sense that you’d have to eat a large quantity – far more than anyone might reasonably consume by accident – before it became deadly, and you’d almost certainly throw up long before then. Borax can irritate the skin (but see note at the end), and inhalation of the dust is well known to irritate the lungs. This is more of a concern for people working with borax on an industrial scale day in and day out – but it could become an issue if, say, someone were making slime every single day using large quantities of borax (not recommended).

Then there’s another concern. If borax is exposed to hydrochloric acid, it forms boric acid. Long-term exposure to boric acid can cause kidney damage and fertility problems, both in men and women. It’s also potentially teratogenic, which means it could cause harm to an unborn child. Borax and boric acid are not the same thing but, of course, our stomachs contain hydrochloric acid. Therefore, if you swallow borax, you’re effectively exposed to boric acid.

Frequent exposure to borax might cause skin irritation (see note at end)

These risks are the reason borax was added to the Substance of Very High Concern (SVHC) candidate list on 16 December 2010, which is the first step in restricting use of the chemical within the European Union. As far as I can establish, it’s still a “candidate”, but the European Chemicals Agency substance information card does state that borax may “damage fertility or the unborn child”.

Now, the chances of achieving the levels involved in “long-term exposure” from occasionally handling borax solutions are slim to none. It’s safe to handle dilute borax solutions (see notes at the end). Indeed, borax is even approved as a food preservative in the EU (E285). To put it into context, alcohol (ethanol) also causes organ damage and is a known teratogen and a carcinogen (which borax isn’t) and that turns up in all sorts of things we’re regularly in contact with, everything from antiseptic hand gels to mouthwashes to drinks (and it’s also approved as a food additive, E1510 – which is good news if you like liqueur chocolates).

I personally have no concerns about handling dry borax in small quantities to make up solutions myself. However, I wouldn’t let children do that part. Once made I’d consider the solution safe, so long as children were supervised and weren’t doing anything really silly like drinking it. I’d also tell children to wash their hands after handling the slime and, if I thought they had sensitive skin for any reason (eczema, say) I’d suggest plastic gloves.

Borax is easy to buy online.

Because of the European Regulations, it theoretically shouldn’t be that easy to get hold of borax in the UK. But I found it for sale on Amazon.co.uk. The listing says that it “can only be purchased by Professionals and by trade and business users,” (sic) but I ordered some and there were no checks. A plastic bag full of borax powder (the decahydrate, Na2B4O7.10H2O) arrived within a few days.

Most of the news reports doing the rounds have involved children suffering from severe skin irritation. For example, in February this year a woman from Manchester posted photos of chemical burns on her daughter’s hands online as a warning to other parents. However, looking into the details of that story it turns out that she wasn’t using borax. In fact, she used fabric detergent “as an alternative”.

Take a look at pretty much type of fabric detergent and you’ll find hazard warnings, usually indicating it’s corrosive and definitely saying “keep out of reach of children”. Those are there for a reason. Fabric detergent is designed to remove grease and  stains. In other words, to break down fats and proteins, and guess what your skin is made of? Yep. Don’t get neat fabric detergent on your hands. Even if your skin isn’t particularly sensitive, it’s almost certainly going to irritate it.

Fabric detergents are usually labelled corrosive.

Bottom line: don’t use fabric detergent as a borax alternative to make slime, because there’s a real risk that enough of it could get onto your (or your child’s) skin that it could irritate.

When it comes to borax itself, if I understand things correctly, it’s not actually restricted in the EU – including the UK – yet. (I might have this wrong – do correct me if you think I have.) It’s not something you can pop to the supermarket and buy, but as we’ve established you can buy it online fairly easily.

Borax solutions are extremely unlikely to cause harm, if used sensibly (boron chemist David Schubert agrees, see note at the end). But, once again: if you’re doing this experiment it’s best not to let children make up the solution – an adult should do that part.

A sensible quantity is about 1 gram of borax in 25 millilitres of warm water (for those without a metric scale: one level teaspoon of borax in half a cup measure of water). This will actually polymerise quite a bit of PVA – you don’t need that much. I recommend making the borax solution in a labelled plastic cup which you should throw away afterwards. Don’t leave it anywhere where someone might mistake it for their drink! Once the solution is made just add a little bit to some PVA in another plastic cup, give it a good stir with a spoon or a lolly stick, and the magic (chemistry) will happen. Add food colouring if you like (be aware that it can stain!) and enjoy the slimy goodness. (See additional note for teachers & technicians at the end.)

Do supervise any and all slime-making, don’t let children handle slime all day, every day, and if you know they have sensitive skin, make them wear plastic gloves. Make them wash their hands before they eat or drink anything.

If a child has made slime somewhere else, at a party or a science club, say, and they bring it home, again, there’s no need to worry. They can play with it perfectly safely. Don’t let them leave it on a radiator, though. That will end in disaster.

I am not a fan of the “it might be a bit dangerous, so no one should ever try it” mentality. I mean, that’s just no fun, is it? But I’m also not a fan of unnecessary risks – because trips to hospital are equally no fun. So if you want to try this experiment, I’ve summarised my guidance in this graphic.

Stay safe with slime by following this guidance

And if you want a even safer slimy experiment, and you can bear the mess, I suggest mixing cornflour with just enough water to make a thick paste in a shallow tray. Then let your kids stick their fingers in it, bounce things off it, and generally play with it. (Check out this link to find out more about why it behaves as it does.) I’m told it makes an even better mixture if you add basil seeds.

Have fun this summer, stay safe, and don’t eat the slime!

Note for teachers and technicians:
This post is aimed at people who might be making slime at home, and hence not have easy access to CLEAPSS guidelines. Anyone doing the experiment with students in school should, of course, refer to their department’s risk assessments and policies. For the record, at the time of writing, CLEAPSS classify 0.2M or 40g/dm³ (or more dilute) borax solutions as “low hazard”.

Edit: 15th August 2017:
After I wrote and published this post I was contacted by someone who specialises in boron chemistry, David Schubert. Now, if anyone knows about boron safety, it’ll be the guy who spends all day working with boron-based chemicals! He told me that borax has been shown to be safe for skin contact. He also said that you absorb less boron through intact skin than you consume by eating a normal, healthy diet (boron is a naturally-occurring trace-mineral – nuts and pulses are good sources), and even provided me with a link to a research paper on the subject. I asked him about the high pH of boron solutions, since alkaline solutions can be irritating in general, and he told me that borax solutions are less alkaline than sodium carbonate and not at all irritating to skin. At this point I will stress that when we’ve seen reports of children suffering skin irritation after making slime, it hasn’t been clear exactly what they’ve been handling. It’s very likely they were adding other chemicals to their slime, and it was actually one of those causing the irritation. Perhaps they developed an allergy to something. It’s impossible to say. Either way, the bottom line is that borax solutions are pretty safe – there’s no need to worry. (Still don’t drink them though!)


Like the Chronicle Flask’s Facebook page for regular updates, or follow @chronicleflask on Twitter. All content is © Kat Day 2017. You may share or link to anything here, including the images, but you must reference this site if you do.


All comments are moderated. Abusive comments will be deleted, as will any comments referring to posts on this site which have had comments disabled.

Advertisements