The Chronicles of the Chronicle Flask: 2019

Happy New Year, everyone! Usually, I write this post in December but somehow things have got away from me this year, and I find myself in January. Oops. It’s still early enough in the month to get away with a 2019 round-up, isn’t it? I’m sure it is.

It was a fun year, actually. I wrote several posts with International Year of the Periodic table themes, managed to highlight the tragically-overlooked Elizabeth Fulhame, squeezed in something light-hearted about the U.K.’s weird use of metric and imperial units and discovered the recipe for synthetic poo. Enjoy!

Newland’s early table of the elements

January started with a reminder that 2019 had been officially declared The Year of the Periodic Table, marking 150 years since Dmitri Mendeleev discovered the “Periodic System”. The post included a quick summary of his work, and of course mentioned the last four elements to be officially named: nihonium (113), moscovium (115), tennessine (117) and oganesson (118). Yes, despite what oh-so-many periodic tables still in widespread use suggest (sort it out in 2020, exam boards, please), period 7 is complete, all the elements have been confirmed, and they all have ‘proper’ names.

February featured a post about ruthenium. Its atomic number being not at all significant (there might be a post about rhodium in 2020 😉). Ruthenium and its compounds have lots of uses, including cancer treatments, catalysis, and exposing latent fingerprints in forensic investigations.

March‘s entry was all about a little-known female chemist called Elisabeth Fulhame. She only discovered catalysis. Hardly a significant contribution to the subject. You can’t really blame all those (cough, largely male, cough) chemists for entirely ignoring her work and giving the credit to Berzelius. Ridiculous to even suggest it.

An atom of Mendeleevium, atomic number 101

April summarised the results of the Element Tales Twitter game started by Mark Lorch, in which chemists all over Twitter tried to connect all the elements in one, long chain. It was great fun, and threw up some fascinating element facts and stories. One of my favourites was Mark telling us that when he cleared out his Grandpa’s flat he discovered half a kilogram of sodium metal as well as potassium cyanide and concentrated hydrochloric acid. Fortunately, he managed to stop his family throwing it all down the sink (phew).

May‘s post was written with the help of the lovely Kit Chapman, and was a little trot through the discoveries of five elements: carbon, zinc, helium, francium and tennessine, making the point that elements are never truly discovered by a single person, no matter what the internet (and indeed, books) might tell you.

In June I wrote about something that had been bothering me a while: the concept of describing processes as “chemical” and “physical” changes. It still bothers me. The arguments continue…

In July I came across a linden tree in a local park, and it smelled absolutely delightful. So I wrote about it. Turns out, the flowers contain one of my all-time favourite chemicals (at least in terms of smell): benzaldehyde. As always, natural substances are stuffed full of chemicals, and anyone suggesting otherwise is at best misinformed, at worst outright lying.

Britain loves inches.

In August I wrote about the UK’s unlikely system of units, explaining (for a given value of “explaining”) our weird mishmash of metric and imperial units. As I said to a confused American just the other day, the UK is not on the metric system. The UK occasionally brushes fingers with the metric system, and then immediately denies that it wants anything to do with that sort of thing, thank you very much. This was my favourite post of the year and was in no way inspired by my obsession with the TV adaptation of Good Omens (it was).

In September I returned to one of my favourite targets: quackery. This time it was amber teething necklaces. These are supposed to work (hmm) by releasing succinic acid from the amber beads into the baby’s skin where it… soothes the baby by… some unexplained mechanism. They don’t work and they’re a genuine choking hazard. Don’t waste your money.

October featured a post explaining why refilling plastic bottles might not be quite as simple as you thought. Sure, we all need to cut down on plastic use, but there are good reasons why shops have rules about what you can, and can’t, refill and they’re not to do with selling more bottles.

November continued the environmental theme with a post was all about some new research into super-slippery coatings that might be applied to all sorts of surfaces, not least ceramic toilet bowls, with the goal of saving some of the water that’s currently used to rinse and clean such surfaces. The best bit about this was that I discovered that synthetic poo is a thing, and that the recipe includes miso. Yummy.

Which brings us to… December, in which I described some simple, minimal-equipment electrolysis experiments that Louise Herbert from STEM Learning had tested out during some teaching training exercises. Got a tic tac box, some drawing pins and a 9V battery? Give it a go!

Well, there we have it. That’s 2019 done and dusted. It’s been fun! I wonder what sort of health scares will turn up for “guilty January”? Won’t be long now…


Like the Chronicle Flask’s Facebook page for regular updates, or follow @chronicleflask on Twitter. Content is © Kat Day 2020. You may share or link to anything here, but you must reference this site if you do. If you enjoy reading my blog, please consider buying me a coffee through Ko-fi using the button below.
Buy Me a Coffee at ko-fi.com

Let’s change the way we talk about changes

It’s nearly the end of the school year here in the U.K., traditionally a time for reflecting on what’s gone before and planning ahead for the shiny, new September coming in a mere nine weeks (sorry, teachers!). With that in mind, let’s talk about something that comes up early in most chemistry syllabuses, and which bothers me a little more each time I think about it.

Chemical reactions occur when a match burns.

It’s the concept of chemical and physical changes. For those who aren’t familiar, this is the idea that changes we observe happening to matter fall into two, broad categories: chemical changes, where new substances are made, and physical changes, where no new substances are made.

Examples of chemical changes include things like burning a match, cooking an egg, or the reaction between vinegar and baking soda. Physical changes are largely changes of state, such as melting and boiling, but also include changes such as dissolving salt in water, or grinding limestone chips to powder.

So far, so good. Except… then we start to put descriptors on these things. And that’s when the trouble starts.

multiple choice exam questionThe first problem comes with the idea that “chemical changes are irreversible.” This is often taught in early secondary science as a straight-up fact, and is so pervasive that it’s even appeared in multiple choice exam questions, like the one shown here. The student, for the record, was expected to choose option C, “the change is irreversible.”

Except. Argh. I can tell you exactly why the student has opted for D, “the change is reversible,” and it’s not because they haven’t done their revision. Quite the opposite, in fact. No, it’s because this student has learned about weak acids. And in learning about acids, this student met this symbol, ⇌, which literally indicates a reversible chemical reaction.

Yes, that’s right. Not too long after teaching students that chemical reactions are not reversible, we then explicitly teach them that they are. Indeed, this idea of chemical reversibility is such a common one, such an important concept in chemistry, that we even have a symbol for it.

Now, of course, I can explain this. When we say chemical reactions are irreversible, what we mean is “generally irreversible if they’re carried out in an open system.” In other words, when the wood in that match burns out in the open, the carbon dioxide and water vapour that form will escape to the atmosphere, never to return, and it’s impossible to recover the match to its original state.

The problem is that many chemical reactions occur in closed systems, not least a lot of reactions that happen in solution. Hence, the whole acids thing, where we talk about weak acids “partially dissociating” into ions.

Then there’s that entire topic on the Haber process…

Can I be the only one to think that this is rather a lot of nuance to expect teenagers to keep in their head? It’s nothing short of confusing. Should we really be saying one thing in one part of a course, and the literal opposite in another? To be clear, this isn’t even a GCSE vs. A level thing – these ideas appear in the same syllabus.

Melting is a change of state, in this case from (solid) ice to (liquid) water.

All right, okay, let’s move along to the idea that physical changes are reversible. That’s much more straightforward, isn’t it? If I melt some ice, I can re-freeze it again? If I boil some water, I can condense it back into the same volume of liquid… well… I can if I collect all vapour. If I do it in a closed system. The opposite of the condition we imposed on the chemical reactions. Er. Anyway…

We might just about get away with this, if it weren’t for the grinding bit. If physical changes are truly readily reversible, then we ought to be able to take that powder we made from the limestone lumps and make it back into a nice single piece again, right? Right?

See, this is the problem. What this is really all about is entropy, but that’s a fairly tricky concept and one that’s not coming up until A level chemistry.

Okay. Instead of talking about reversible and irreversible, let’s talk about bond-breaking and bond-forming. That’s fine, isn’t it? In chemical changes, bonds are broken and formed (yep) and in physical changes, they aren’t.

Except….

Let’s go back to water for a moment. Water has the formula H2O. It’s made up of molecules where one oxygen atom is chemically bonded to two hydrogen atoms. When we boil water, we don’t break any of those bonds. We don’t form hydrogen and oxygen gas when we boil water; making a hot cup of tea would be a lot more exciting if we did. So we can safely say that boiling water doesn’t involve breaking any bonds, right? We-ell…

Water molecules contain covalent bonds, but the molecules are also joined by (much weaker) hydrogen bonds.

The trouble is that water contains something called hydrogen bonds. We usually do a bit of a fudge here and describe these as “intermolecular forces,” that is, forces of attraction between molecules. This isn’t inaccurate. But the clue is in the name: hydrogen bonds are quite, well, bond-y.

When water boils, hydrogen bonds are disrupted. Although the bonds in individual H2O molecules aren’t broken, the hydrogen bonds are. Which means… bonds are broken. Sort of.

But we’re probably on safe ground if we talk about the formation of new substances. Aren’t we?

Except….

What about dissolving? If I dissolve hydrogen chloride gas, HCl, in water, that’s a physical change, right? I haven’t made anything new? Or… have I? I had molecules with a covalent bond between the hydrogen and the chlorine, and now I have… er… hydrochloric acid (note, that’s a completely different link to the one I used back there), made up of H+ and Cl- ions mingled with water molecules.

So… it’s…. a chemical change? But wait. We could (I don’t recommend it) evaporate all that water away, and we’d have gaseous HCl again. It’s reversible.

Solid iodine is silvery-grey, but iodine vapour is a brilliant violet colour.

Hm. What about the signs that a chemical change is occurring? Surely we’re all right there? Fizzing: that’s a sign of a chemical change. Except… are you sure you know the difference between boiling and fizzing? It’s basically all bubbles, after all. Vapour? But, steam is a vapour, isn’t it? Although, on the other hand, water is a product of several chemical reactions. Colour changes? Check out what happens when you heat a small amount of solid, silvery-grey iodine so that it sublimes (spoiler: there’s a colour change).

Is anyone else really confused by now?

You should be. Your students almost certainly are.

There are, in short, more exceptions to every single one of these rules that there are for that “i before e” thing you learned in English (a rule, incidently, which is particularly galling for scientists who constantly have to deal with weights and heights).

Where do we go from here? I think it’s probably time we asked ourselves why we’re even teaching this concept in the first place. Really, it’s there to get students to think about the difference between changes of state and chemical reactions.

I suspect we need to worry about this rather less than we are: most children are very good at identifying changes of state. They do it instinctively. They only start getting confused about it when we teach them a lot of rules which they then try to apply. I’m pretty sure that’s not the way teaching is supposed to work.

A complicated arrangement of chemical glassware

This could definitely be simpler.

If I had my way, I’d ditch the physical and chemical change labels altogether and, instead, just talk about changes of state and chemical reactions. There is precisely one differentiator between these two, and it is: have we made any new stuff? If the answer is no, it’s a change of state. If the answer is yes, then a chemical reaction has occurred. Job done. (And yes, this would squarely define gaseous hydrogen chloride dissolving in water to form hydrochloric acid as a chemical reaction, and I have no problem at all with that.)

I say we change the way we talk about changes: chemistry has a reputation for being tricky, and this sort of confusing, contradictory thing is part of the reason why.


Like the Chronicle Flask’s Facebook page for regular updates, or follow @chronicleflask on Twitter. Content is © Kat Day 2019. You may share or link to anything here, but you must reference this site if you do. If you enjoy reading my blog, please consider buying me a coffee through Ko-fi using the button below.
Buy Me a Coffee at ko-fi.com