Neem: nice, nasty or… not sure?

A few days ago it was sunny and slightly breezy outside (yes, it’s August, but I live in the UK – this isn’t as common as you might imagine) and I thought, I should make the most of this and do something about my orchids.

Now, anyone that reads this blog regularly will know that my Dad is a horticulturist. I, however, am not. My fascination with bright colours, interesting smells and complicated naming conventions went down the chemistry route. But I am, oddly, quite good with Phalaenopsis, aka, moth orchids. I don’t really know why, or how, but I seem to have come to some sort of agreement with the ones that live on my kitchen windowsill. It goes along the lines of: I’ll water you once a week, and you make flowers a couple of times a year, and we’ll otherwise leave each other alone, okay?

Scale bugs secrete honeydew, which encourages the growth of sooty moulds

Well, this was fine for years, until we somehow acquired an infestation of scale bugs. These tiny but extremely annoying pests feed by sucking sap from leaves of plants, and they excrete a sticky substance called honeydew. Trust me, it’s not as nice as it sounds. Firstly, it really is sticky, and makes a horrible mess not just of the orchid leaves, but also the area around the plants.

Then it turns out that certain types of mould just love this stuff, so you end up with black spots on the leaves. And, not surprisingly, all this weakens the plant.

So, what’s the answer? Well, there are several. But the one I tend to default to is neem oil.

This stuff is a vegetable oil from the seeds of the Azadirachta indica, or neem, tree. It has a musty, nutty sort of smell, and is fairly easy to buy.

It’s indigenous to the Indian subcontinent and has been historically important in traditional medicine. In fact, The Sanskrit name of this evergreen tree is ‘Arishtha’, which means ‘reliever of sickness’.

So it’s a natural vegetable oil and people have been using it as a remedy for thousands of years – must be totally safe, right? Right?

Well… I’ve said it before, but some of the very best horribly toxic things are entirely natural, and neem is yet another example. Ingestion of significant quantities can cause metabolic acidosis (finally, something that really does have the potential to change blood pH! Er… but not… in a good way), kidney failure, seizures, and brain damage in children. Skin contact can cause contact dermatitis. It’s been shown to work as a contraceptive and, more problematically, it’s a known abortifacient (causes miscarriage).

Neem oil is easy to buy, but it needs to be handled with caution

All this said, as always, the dose make the poison.

One case study in the Journal of The Association of Physicians of India reported on a 36-year-old man who swallowed 30–50 ml (about three tablespoons) of neem oil, in the hope of treating the corns on his feet. As far as I can tell, it didn’t help his corns. It did cause vomiting, drowsiness, a dangerous drop in blood pH and seizures. There’s no specific antidote for neem poisoning, but the hospital managed his symptoms. Luckily, despite the hammering his kidneys undoubtedly took, he didn’t need dialysis, and was discharged from hospital after just over a week.

Now, okay, you’re unlikely to accidentally swallow three tablespoons of any oil, especially not neem which does have quite a strong, not entirely pleasant, smell and (reportedly – I haven’t tried for obvious reasons) a bitter taste. But nevertheless, it’s wise to be cautious, particularly around children who have a smaller body mass and therefore are much more likely to suffer serious effects – up to and including death. In one reported case, a mother gave a 3-month-old child a teaspoon of neem oil in the hope of curing his indigestion – fortunately he survived, but not without some seriously scary symptoms.

Nimbin, a chemical found in neem oil, is reported to have all sorts of beneficial effects [image source]

Okay, so those are the dangers. Let’s talk chemistry. The Pakistani organic chemist Salimuzzaman Siddiqui is thought to be the first scientist to formally investigate the various compounds in neem oil. In 1942 he extracted three compounds, and identified nimbidin as the main antibacterial substance in neem. He was awarded an OBE in 1946 for his discoveries.

I will confess, at this point, to running into a little bit of confusion with the nomenclature. Nimbidin is described, in some places at least, as a mixture of compounds (collectively, tetranortriterpenes) rather than a single molecule. But either way, it has been shown to have anti-inflammatory properties – at least in rats.

Another of the probably-mostly-good substances in neem is nimbin: a triterpenoid which is reported to have a whole range of positive properties, including acting as an anti-inflammatory, an antipyretic, a fungicide, an antiseptic and even as an antihistamine. Interestingly, I went looking for safety data on nimbin, and I couldn’t find much. That could mean it’s safe, or it could mean it just hasn’t been extensively tested.

Azadirachtin, another chemical found in neem, is a known pesticide [image source]

The substance that seems to do most of the pesticide heavy lifting is azadirachtin. This is a limonoid (compounds that are probably best known for their presence in citrus fruits). It’s what’s called an antifeedant – a substance produced by plants to deter predators from munching on them. Well, mostly. Humans have a strange habit of developing a taste for plants that produce such substances. Take, for example, odoriferous garlic, clears-out-your-sinuses horseradish, and of course the daddy of them all: nicotine.

Azadirachtin is known to affect lots of species of insects, both by acting as an antifeedant and as a growth disruptor. Handily, it’s also biodegradable – and breaks down in a few days when exposed to light and water.

That makes it appealing as a potential pesticide, and it’s also generally described as having low toxicity in mammals – its reported LD50 tends to fall into the grams per kilogram range, which makes it “moderately to slightly toxic“. Wikipedia quotes a value (without a source, as I write this) of >3,540 mg/kg in rats.

But… I did find another page quoting 13 mg/kg in mice. That’s quite dramatically different, and would make it extremely/highly toxic. Unfortunately I couldn’t get my hands on the original source, so I haven’t been able to verify it’s not a transposition error.

Let’s assume it isn’t. It would be odd to have such a big difference between mice and rats. Things that poison mice tend to poison rats, too. There might be some confusion over pure azadirachtin vs. “neem extract” – it could be the case that the mixture of chemicals working together in neem create some sort of synergistic (toxic) effect – greater than the sum of all the individual substances. It could be an experimental error, including a contaminated neem sample, or something to do with the way the animals were exposed to the extract.

Neem soap is widely available online, but that may not be a good thing…

It’s difficult to say. Well, it’s difficult for me to say, because I don’t have access to all the primary sources. (Any toxicologists out there, please do feel free to weigh into the comments section!) But either way, as I’ve already mentioned, several case studies have fingered azadirachtin as one of the substances likely to be causing the well-reported nasty side effects.

If you’re asking this chemist? I say be careful with the stuff. If you decide to use it on your plants, keep it out of reach of children, and wear some good-quality disposable gloves while you’re handling it (I put some on after I took that photo back there). If you’re pregnant, or trying to become pregnant, the safest option is to not use it at all.

Which brings me to neem soap.

Yup. It’s sold as a “natural” treatment for skin conditions like acne. I won’t link to a specific brand, but it’s easy to find multiple retailers with a simple Google search. I looked at one selling soap bars for £6.99 a pop, containing 10% (certified organic, because of course) neem oil. Did I mention back there that neem is known to cause contact dermatitis? I’m fairly sure I did. None of the products I saw had obvious safety warnings, and I certainly found nothing about safety (or otherwise) for pregnant women.

Plus – worryingly, not least because children are more likely to get things in their mouth – you can also buy kids and babies versions, again purporting to contain 10% neem oil.

I even found neem toothpaste. Which… given people often swallow toothpaste… yikes.

My moth orchids are looking much healthier now I’ve got rid of all the scale bugs!

Now again, and for the umpteenth time, the dose makes the poison. The case studies I’ve mentioned involved, at a minimum, swallowing a teaspoon of pure neem oil, and you’re not getting that sort of quantity from smears of toothpaste. But, at the same time, when it comes to pregnancy and babies, it’s generally sensible to apply a precautionary principle, especially for things like soap and toothpaste for which alternatives with well-established safety profiles exist.

Bottom line? Would I use these products? I would not.

But I do use neem to treat the scale bugs on my orchids, and they’re doing much better than they were. Fingers crossed for more flowers!


Do you want something non-sciency to distract you from, well, everything? Why not take a look at my fiction blog: the fiction phial? You can also find me doing various flavours of editor-type-stuff at the horror podcast, PseudoPod.org – so head over there, too!

Like the Chronicle Flask’s Facebook page for regular updates, or follow @chronicleflask on Twitter. Content is © Kat Day 2021. You may share or link to anything here, but you must reference this site if you do. You can support my writing my buying a super-handy Pocket Chemist from Genius Lab Gear using the code FLASK15 at checkout (you’ll get a discount, too!) or by buying me a coffee – the button is right here…
Buy Me a Coffee at ko-fi.com

Faking Lateral Flow Tests: the problem with pH

Fruit juices can be used to generate a fake positive on COVID-19 LFTs

On Thursday last week, I got a message from Prof Mark Lorch — my sometime collaborator on supercharacter-based ramblings.

“Have you seen the reports of kids fooling the Covid lateral flow tests and getting false +ve results by adding orange juice to the devices?” he wondered.

At this point, I had not – but I quickly got up to speed. Mark had previously made an excellent video explaining how lateral flow test (LFT) devices work, so it was just a case of working out, firstly, whether the false positives were reproducible, and secondly, speculating what, exactly, was causing them.

Thus ensued some interesting discussion which ultimately led to a couple of articles from Mark. One at The Conversation and another, slightly more recently, at BBC Future.

I won’t delve into LFT-related science, because Mark has covered it (really, check the video and those articles), but I am going to talk a little bit about pH – the scale chemists use to measure how acidic or alkaline solutions are – because as soon as news of this started to gain traction people, predictably, started trying it out themselves. And that was when things got really interesting.

Image

The buffer included with LFTs is effective at neutralising the pH of solutions, for example, cola

Now, firstly, and importantly: the test kits come with a small vial of buffer solution. Buffers are substances which resist pH changes. As I’ve written before, our bodies naturally contain buffer systems, because keeping the pH of our blood and other body fluids constant is important. In fact, if blood pH varies even a little, you’re in all sorts of serious trouble (which is how we can be certain that so-called “alkaline” diets are a load of hooey). Anyway, the important message is: don’t mix any liquid you’re testing with the contents of that phial, because that will neutralise it.

If you want to try this for yourself, just drop the liquid you want to test directly into the window marked S on the test.

That out of the way, let’s get back to pH. It’s a scale, usually presented as going from 0–14, often associated with particular colours. The 0 end is usually red, the 7 in the middle is usually green, while the 14 end is usually dark blue.

These colours are so pervasive, in fact, that I’ve met more than one person with the idea that acids are red, and alkalis are blue. This isn’t the case, of course. The red/green/blue idea largely comes from universal indicator (UI), which is a mixture of dyes that change colour at different pH values. There’s also a common indicator called litmus (people sometimes mix up UI and litmus, but they’re not the same) which is also red in acid and blue in alkali.

Some species of hydrangea produce pink flowers in alkaline soil, blue in acid soil.

There are actually lots of pH indicators, with a wide variety of colour changes. Phenolphthalein, for example, is bright pink in alkali, and colourless in acids. Bromocresol purple (they have such easy-to-spell names) is yellow in acids, and violet-purple in alkalis.

Many plants contain natural indicators. Just to really mix things up, some species of hydrangea produce flowers that are blue-purple when they’re grown in acidic soil, and pink-red in alkaline conditions.

Bottom line? Despite the ubiquitous diagrams, pH has nothing to do with colour. What it is to do with is concentration. Specifically, the concentration of hydrogen ions (H+) in the solution. The more H+ ions there are, the more acidic the solution is, and the lower the pH. The fewer there are, the less acidic (and the more alkaline, and higher pH) it is.

In fact, pH is a log scale. When the concentration changes by a factor of 10, the pH changes by one point on the scale.

This means that if you take an acid with pH of 2, and you dilute it 1 part to 10, its pH changes to 3 (i.e. gets one point more alkaline, closer to neutral). Likewise, if you dilute an alkali with a pH of 10 by 1:10, its pH will shift to 9 (again, closer to neutral).

And what this means is that the pH of substances is not a fixed property.

Louder for anyone not paying attention at the back: the pH of substances is not a fixed property!

Yes, we’ve all seen diagrams that show, for example, the pH of lemon juice as 2. This is broadly true for most lemons, give or take, but if you dilute the lemon juice, the pH rises.

Apple juice dropped directly into the test window gives an immediate “positive” result.

I am by no means an expert in commercial, bottled lemon juice, but I reckon a lot of them have water added – which may well explain why @chrismiller_uk was able to get a positive result, while @BrexitClock, using a French bottle of lemon juice, couldn’t.

Mark and I concluded that the pH you need to aim for is probably around 3–4. Go too low, and you don’t get a positive (and you might wipe out the control line, too). Likewise, too high also won’t work.

Myself, I tried apple juice. I couldn’t find the indicator colour key for my indicator paper (I really must clear out the drawers one of these days) but it’s broadly the same as Mark’s cola photo, up above. In other words, the apple juice is about pH 3. And it gives a beautiful positive result, immediately.

One more interesting observation: Mark recorded some time-lapse video comparing orange juice to (sugar-free) cola. It shows the cola test line developing a lot more slowly. We’re not entirely sure why, but it may be pH again: orange juice almost certainly has a lower pH than cola.

For any parents reading this thinking we’re being terribly irresponsible, fear not: as Prof Lorch has made clear in his articles, you can identify a fake by waiting a few minutes and then dropping some of the buffer solution provided in the test window. As I said above, this will neutralise the pH, and the positive test line will disappear. Extra buffer won’t change a genuinely-positive test, because the antibodies bind very tightly (more technical info here). To quote Mark: “you’d need a swimming pool’s worth of buffer to have any chance of washing [the antibodies] off.”

Alternatively, you can just watch your teenager as they do their tests, and make sure they’re not getting up to anything nefarious…

Have you tried to trick an LFT? If you have, share your results! Look us up on Twitter: @chronicleflask and @Mark_Lorch or add a comment below. We’d love to see your photos!


Do you want something non-sciency to distract you from, well, everything? Why not take a look at my fiction blog: the fiction phial? You can also find me doing various flavours of editor-type-stuff at the horror podcast, PseudoPod.org – so head over there, too!

Like the Chronicle Flask’s Facebook page for regular updates, or follow @chronicleflask on Twitter. Content is © Kat Day 2021. You may share or link to anything here, but you must reference this site if you do. You can support my writing my buying a super-handy Pocket Chemist from Genius Lab Gear using the code FLASK15 at checkout (you’ll get a discount, too!) or by buying me a coffee – the button is right here…
Buy Me a Coffee at ko-fi.com

Easy Indicators

Indicator rainbow, reproduced with kind permission of Isobel Everest, @CrocodileChemi1

Recently on Twitter CrocodileChemist (aka Isobel Everest), a senior school science technician (shout out to science technicians, you’re all amazing) shared a fabulous video and photo of a “pH rainbow”.

The effect was achieved by combining various substances with different pH indicators, that is, substances that change colour when mixed with acids or alkalis.

Now, this is completely awesome, but, not something most people could easily reproduce at home, on account of their not having methyl orange or bromothymol blue, or a few other things (that said, if you did want to try, Isobel’s full method, and other indicator art, can be found here).

But fear not, I’ve got this. Well, I’ve got a really, really simple version. Well, actually, I’ve got more of an experiment, but you could make it into more of a rainbow if you wanted. Anyway…

This is what you need:

  • some red cabbage (one leaf is enough)
  • boiling water
  • mug
  • white plate, or laminated piece of white card, or white paper in a punched pocket
  • cling film/clear plastic wrap (if you’re using a plate)
  • mixture of household substances (see below)
  • board marker (optional) or pen
  • plastic pipettes (optional, but do make it easier – easily bought online)

First, make the indicator. There are recipes online, but some of them are over-complicated. All you really need to do is finely chop the red cabbage leaf, put it in a mug, and pour boiling water over it. Leave it to steep and cool down. Don’t accidentally drink it thinking it’s your coffee. Pour off the liquid. Done.

If you use a plate, cover it with cling film

Next, if you’re using a plate, cover it with cling film. There are two reasons for this: firstly, cling film is more hydrophobic (water-repelling) than most well-washed ceramic plates, so you’ll get better droplets. Secondly, if you write on a china plate with a board marker it doesn’t always wash off. Ask me how I know.

Next step: hunt down some household chemicals. I managed to track down oven cleaner, plughole sanitiser, washing up liquid, lemon juice, vinegar, limescale remover and toilet cleaner (note: not bleach – don’t confuse these two substances, one is acid, one is alkali, and they must never be mixed).

Label your plate/laminated card/paper in punched pocket with the names of the household substances.

Place a drop of cabbage indicator by each label. Keep them well spaced so they don’t run into each other. Also, at this stage, keep them fairly small. Leave one alone as a ‘control’. On my plate, it’s in the middle.

Add a drop of each of your household substances and observe the colours!

Red cabbage indicator with various household substances

IMPORTANT SAFETY NOTE: some of these substances are corrosive. The risk is small because you’re only using drops, but if working with children, make sure an adult keeps control of the bottles, and they only have access to a tiny amount. Drip the more caustic substances yourself. Take the opportunity to point out and explain hazard warning labels. Use the same precautions you would use when handling the substance normally, i.e. if you’d usually wear gloves to pick up the bottle, wear gloves. Some of these substances absolutely must not be mixed with each other: keep them all separate.

Here’s a quick summary of what I used:

A useful point to make here is that pH depends on the concentration of hydrogen ions (H+) in the solution. The more hydrogen ions, the more acidic the solution is. In fact, pH is a log scale, which means a change of x10 in hydrogen concentration corresponds to a change of one pH point. In short, the pH of a substance changes with dilution.

Compound Interest’s Cabbage Indicator page (click image for more info)

Which means that if you add enough water to acid, the pH goes up. So, for example, although the pH of pure ethanoic acid is more like 2.4, a dilute vinegar solution is probably closer to 3, or even a bit higher.

Compound Interest, as is usually the case, has a lovely graphic featuring red cabbage indicator. You can see that the colours correspond fairly well, although it does look like my oven cleaner is less alkaline (closer to green) than the plughole sanitiser (closer to yellow).

As the Compound Interest graphic mentions, the colour changes are due to anthocyanin pigments. These are red/blue/purple pigments that occur naturally in plants, and give them a few advantages, one of which is to act as a visual ripeness indicator. For example, the riper a blackberry is, the darker it becomes. That makes it stand out against green foliage, so it’s easier for birds and animals to find it, eat it and go on to spread the seeds. Note that “unripe” colours, yellow-green, are at the alkaline end, which corresponds to bitter flavours. “Ripe” colours, purple-red, are neutral to acidic, corresponding with much more appealing sweet and tart flavours. Isn’t nature clever?

You can make a whole mug full of indicator from a single cabbage leaf (don’t drink it by mistake).

Which brings me to my final point – what if you can’t get red cabbage? Supermarkets are bit… tricky at the moment, after all. Well, try with some other things! Any dark-coloured plant/fruit should work. Blueberries are good (and easy to find frozen). The skins of black grapes or the very dark red bit of a rhubarb stalk are worth a try. Blackberries grow wild in lots of places later in the year. Tomatoes, strawberries and other red fruits will also give colour changes (I’ve talked about strawberries before), although they’re less dramatic.

For those (rightly) concerned about wasting food – you don’t need a lot. I made a whole mug full of cabbage indicator from a single cabbage leaf, and it was the manky brown-around-the-edges one on the outside that was probably destined for compost anyway.

So, off you go, have fun! Stay indoors, learn about indicators, and stay safe.

EDIT: after I posted this, a few people tried some more experiments with fruits, vegetables and plants! Beaulieu Biology posted the amazing grid below, which includes everything from turmeric to radishes:

Image reproduced with kind permission of Beaulieu Biology (click for larger version)

And Compound Interest took some beautiful photos of indicator solutions extracted from a tulip flower, while CrocodileChemist did something similar and used the solutions to make a gorgeous picture of a tree. Check them out!


If you’re studying from home, have you got your Pocket Chemist yet? Why not grab one? It’s a hugely useful tool, and by buying one you’ll be supporting this site – it’s win-win!

Want something non-sciency to distract you? Why not check out my fiction blog: the fiction phial. There are loads of short stories, and even (recently) a couple of poems. Enjoy!

Like the Chronicle Flask’s Facebook page for regular updates, or follow @chronicleflask on Twitter. Content is © Kat Day 2020. You may share or link to anything here, but you must reference this site if you do. If you enjoy reading my blog, please consider buying me a coffee through Ko-fi using the button below.
Buy Me a Coffee at ko-fi.com

Genius Lab Gear: The Pocket Chemist

The lovely people at Genius Lab Gear were kind enough to send me one of these to try the other day: The Pocket Chemist!

The Pocket Chemist is a handy double-sided stencil and chemistry reference.

It’s a double-sided stencil which is also printed with lots of really useful chemistry reference information.

It’s made of enamel-coated stainless steel, which not only gives it a really solid, quality feel, but also means you can spill acetone on it without fear.

The edges are super-straight, so you can use it as a (85 mm) ruler. It’s marked in inches and centimetres, includes a small protractor for measuring angles, and there are stencils for various cyclic compounds—including a hexagon so your benzene rings will always be immaculate.

On the back, there’s a full (if small) periodic table that, yes, has the correct symbols for the four elements that were last to get their names (if your eyes are struggling, click on the photo to see a bigger vision).

There’s a full periodic table on the back (click on the image for a larger version).

There’s plenty of other useful information, too: formulas for pH calculations, Gibbs free energy change and others, a number of useful constants (including Avogadro’s number and the molar gas constant in three different unit forms) and other handy bits and pieces such as prefixes for large and small numbers.

Another clever feature is a phone stand slot: put a sturdy credit card-sized card in the straight line at the top, and you can use it to rest your phone at an angle. It’s not strong enough for heavy-handed screen-jabbing, but it works well enough if you just want to watch a video.

Use the stencils to ensure your hexagons are always perfect!

I have to say, I genuinely love the Pocket Chemist. What a great idea. It’s well-made and the perfect size to fit into your wallet, pocket or pencil case. It’s the perfect piece of kit to take to lessons or lectures (no sneaking it into exams, though!).

Now for the good bit: I’ve got a discount code for you! Order from Genius Lab Gear and enter the code FLASK15 at check out, and you’ll get 15% off your order (and I get a small commission which helps pay for this site—win, win!). Shipping is FREE.

Quick note for my non-American readers: with a few minor exceptions, shipping is free worldwide (it’s a thin item that fits in a regular envelope) and delivery is pretty quick.

… AND if you’d like some Science Word Magnets from the same people, check out this page for a discount code for those!


Like the Chronicle Flask’s Facebook page for regular updates, or follow @chronicleflask on Twitter. Content is © Kat Day 2020. You may share or link to anything here, but you must reference this site if you do.

Electrolysis Made Easy(ish)

Some STEM Learning trainee teachers, looking very keen!

Back in November last year (was it really that long ago??) I wrote a blog post about water, in which I described a simple at-home version of electrolysis. I didn’t think much of it at the time, beyond the fact that it was oddly exciting to do this experiment—that usually involves power-packs and wires and all sorts of other laboratory stuff—with just a 9V battery, a tic tac box and some drawing pins.

Then, hey, what do you know, someone actually read my ramblings! Not only that, read them and thought: let’s try this. And so it was that Louise Herbert, from STEM Learning (that’s their Twitter, here’s their website), contacted me last month and asked if I’d mind if they used the Chronicle Flask as a source for a STEM learning course on practical work.

Of course not, I said, and please send me some pictures!

And they did, and you can see them scattered through this post. But let’s have a quick look at the chemistry…

Electrolysis is the process of splitting up compounds with electricity. Specifically, ionic compounds: the positively-charged ion in the compound travels to the negative electrode, and the negatively-charged ion moves to the positive electrode.

Water is a covalent compound with the formula H2O, but it does split into ions.

Only… wait a minute… water isn’t ionic, is it? So… why does it work on water? Er. Well. Water does split up into ions, a bit. Not very much under standard conditions, but a bit, so that water does contain very small amounts of OH and H+ ions. (In fact, I can tell you exactly how many H+ ions there are at room temperature, it’s 1×10-7 mol dm-3, and, in an astonishing chemistry plot twist, that 7 you see there is why pure water has a pH of, yep, 7.)

So, in theory you can electrolyse water, because it contains ions. And I’ve more than once waved my hands and left it at that, particularly up to GCSE level (age 16 in the U.K.) because, although it’s a bit of a questionable explanation, (more in a minute), electrolysis is tricky and sometimes there’s something to be said for not pushing students so far that their brains start to dribble out of their ears. (As the saying goes, “all models are wrong, but some are useful.”)

Chemists write half equations to show what the electrons are doing in these sorts of reactions and, in very simple terms, we can imagine that at the positive electrode (also called the anode) the OH ions lose electrons to form oxygen and water, like so:

4OH —> 2H2O + O2 + 4e

And conversely, at the negative electrode (also called the cathode), the H+ ions gain electrons to form hydrogen gas, like so:

2H+ + 2e —> H2

These equations balance in terms of species and charges. They make the point that negative ions move to the anode and positive ions move to the cathode. They match our observation that oxygen and hydrogen gases form. Fine.

Except that the experiment, like this, doesn’t work very well (not with simple equipment, anyway), because pure water is a poor electrical conductor. Yes, popular media holds that a toaster in the bath is certain death due to electrocution, but this is because bathwater isn’t pure water. It’s all the salts in the water, from sweat or bath products or… whatever… that do the conducting.

My original experiment, using water containing a small amount of sodium hydrogen carbonate.

To make the process work, we can throw in a bit of acid (source of H+ ions) or alkali (source of OH ions), which improves the conductivity, and et voilà, hydrogen gas forms at the cathode and oxygen gas forms at the anode. Lovely. When I set up my original 9V battery experiment, I added baking soda (sodium hydrogencarbonate), and it worked beautifully.

But now, we start to run into trouble with those equations. Because if you, say, throw an excess of H+ ions into water, they “mop up” most of the available OH ions:

H+ + OH —> H2O

…so where are we going to get 4OH from for the anode half equation? It’s a similar, if slightly less extreme, problem if you add excess alkali: now there’s very little H+.

Um. So. The simple half equations are… a bit of a fib (even, very probably, if you use a pH neutral source of ions such as sodium sulfate, as the STEM Learning team did — see below).

What’s the truth? When there’s plenty of H+ present, what’s almost certainly happening at the anode is water splitting into oxygen and more hydrogen ions:
2H2O —>  + O2 + 4H+ + 4e

while the cathode reaction is the same as before:
2H+ + 2e —> H2

Simple enough, really, but means we use the “negative ions are going to the positive electrode” thing, which is tricky for GCSE students, who haven’t yet encountered standard electrode potentials, to get their heads around, and this is why (I think) textbooks often go with the OH-reacts-at-the-anode explanation.

Likewise, in the presence of excess alkali, the half equations are probably:

Anode: 4OH —> 2H2O + O2 + 4e
Cathode: 2H2O + 2e —> H2 + OH

This time there is plenty of OH, but very little H+, so it’s the cathode half equation that’s different.

Taking a break from equations for a moment, there are some practical issues with this experiment. One is the drawing pins. Chemists usually use graphite or platinum electrodes in electrolysis experiments because they’re inert. But good quality samples of both are also (a) more difficult and more expensive to get hold of and (b) trickier to push through a tic tac box. (There are examples of people doing electrolysis with pencil “leads” online, such as this one — but the graphite in pencils is mixed with other compounds, notably clay, and it’s prone to cracks, so I imagine this works less often and less well than these photos suggest.)

A different version of the experiment…

Drawing pins, on the other hand, are made of metal, and will contain at least one of zinc, copper or iron, all of which could get involved in chemical reactions during the experiment.

When I did mine, I thought I was probably seeing iron(III) hydroxide forming, based, mainly, on the brownish precipitate which looked fairly typical of that compound. One of Louise’s team suggested there might be a zinc displacement reaction occurring, which would make sense if the drawing pins are galvanized. Zinc hydroxide is quite insoluble, so you’d expect a white precipitate. Either way, the formation of a solid around the anode quickly starts to interfere with the production of oxygen gas, so you want to make your observations quickly and you probably won’t collect enough oxygen to carry out a reliable gas test.

In one of their experiments the STEM Learning team added bromothymol blue indicator (Edit: no, they didn’t, oops, see below) to the water and used sodium sulfate as (a pH neutral) source of ions. Bromothymol blue is sensitive to slight pH changes around pH 7: it’s yellow below pH 6 and blue above pH 7.6. If you look closely at the photo you can see that the solution around the anode (on the right in the photo above, I think *squint*) does look slightly yellow-ish green, suggesting a slightly lower pH… but… there’s not much in it. This could make sense. The balanced-for-H+ half equations would suggest that, actually, there’s H+ sloshing around both electrodes (being formed at one, used up at the other), but we’re forming more around the anode, so we’d expect it to have the slightly lower pH.

The blue colour does, unfortunately, look a bit like copper sulfate solution, which might be confusing for students who struggle to keep these experiments straight in their heads at the best of times. One to save for A level classes, perhaps.

(After I published this, Louise clarified that the experiment in the photo is, in fact, copper sulfate. Ooops. Yes, folks, it looks like copper sulfate because it is copper sulfate. But I thought I’d leave the paragraph above for now since it’s still an interesting discussion!)

The other practical issue is that you need a lot of tic tac boxes, which means that someone has to eat a lot of tic tacs. There might be worse problems to have. I daresay “your homework is to eat a box of tic tacs and bring me the empty box” would actually be quite popular.

So, there we are. There’s a lot of potential (haha, sorry) here: you could easily put together multiple class sets of this for a few pounds—the biggest cost is going to be a bulk order of 9V batteries, which you can buy for less than £1 each—and it uses small quantities of innocuous chemicals, so it’s pretty safe. Students could even have their own experiment and not have to work in groups of threes or more, battling with dodgy wires and trippy power-packs (we’ve all been there).

Why not give it a try? And if you do, send me photos!


Like the Chronicle Flask’s Facebook page for regular updates, or follow @chronicleflask on Twitter. Content is © Kat Day 2019 (photos courtesy of STEM Learning UK and Louise Herbert). You may share or link to anything here, but you must reference this site if you do. If you enjoy reading my blog, please consider buying me a coffee through Ko-fi using the button below.
Buy Me a Coffee at ko-fi.com

Refilling bottles: why it may not be as simple as you thought

Two years or so ago most of us had given relatively little thought to single-use plastics. We bought things, we used things, we put the packaging in the bin. Possibly the recycling bin. Hopefully the right recycling bin. And we thought no more about it.

Then Blue Planet II aired on BBC One, specifically episode 7, and suddenly everyone was obsessed with where all this plastic was ending up. Rightly so, since it was clearly ending up in the wrong places, and causing all sorts of havoc in the process.

People started buying reusable cups, eschewing plastic straws and demanding the option of loose fruit and vegetables in supermarkets. Wooden disposable cutlery, oven-cook food containers, and bamboo straws became increasingly common.

And people started to ask more questions about refilling containers. Why do I need a new bottle each time I buy more shampoo or washing up liquid or ketchup, they asked. Why can’t we just refill the bottle? For that matter, couldn’t I take a container to the shop and just… fill it up?

Infinity Foods allow customers to refill containers.

Shops started to offer exactly that. One such place was Infinity Foods, based in Brighton in the UK. Actually, they’d always taken a strong line when it came to recycling and reducing waste, and had been offering refills of some products for years.

Where this gets interesting from a chemistry point of view is a Facebook post they made at the beginning of this month. It said, from the 1st of November, “your empty bottle can only be refilled with the same contents as was originally intended. This includes different brands and fragrances.”

Naturally this spawned lots of comments, many suggesting the change was “daft” and saying things like “I bet it is major corporations not wanting us to reuse the bottle.

Infinity Foods argued that they were tightening up their policy in order to comply with legislation, specifically the Classification, Labelling and packaging of substances and mixtures (CLP) Regulation (EC) No 1272/2008 and others.

This post, and the comments, got me thinking. I’m old enough, just, to remember the days when random glass bottles were routinely filled with random substances. You wandered into the garage (it was always the garage) and there’d be something pink, or blue, or green, or yellow in a bottle. And it might have a hand-written label, and it might not, and even if it did, the label wasn’t guaranteed to actually be representative of the contents. The “open it and sniff” method of identification was common. The really brave might take their chances with tasting. Home-brew wine might well be next to the lawnmower fuel, and if they got mixed up, well, it probably wouldn’t be fatal.

Probably.

Bottles may be single-use, but they’ve also been designed to be as safe as possible.

You know, I’m not sure we ought to be keen to go back to that, even if it does save plastic. Sealed bottles with hard-to-remove child safety caps, nozzles that only dispense small amounts (making it difficult if not impossible to drink the contents, by accident or otherwise) and accurate ingredients lists are, well, they’re safe.

And we’ve all grown used to them. Which means that now, if I pick up a bottle, I expect the label to tell me what’s in it. I trust the label. If I went to someone else’s house and found a bottle of, say, something that looked like washing up liquid by the sink, I’d assume it was what the label said it was. I wouldn’t even think to check.

You might think, well, so what? You fill a bottle, you know what’s in it. It’s up to you. But what about all the other people that might come into contact with that bottle, having no idea of its origins? What if a visitor has an allergy to a particular ingredient? They look at the label, check it doesn’t contain that ingredient, and use it. Only, someone has refilled that bottle with something else, and maybe that something else does contain the thing they’re allergic to.

Even simpler, someone goes to a shop that sells refills, fills a hair conditioner bottle with fabric softener and doesn’t think to label it. They know what it is, right? They leave it in the kitchen, someone else picks up that bottle, and takes it into the shower. They get it in their eyes and… maybe it causes real harm.

Toilet cleaner must never be mixed with toilet bleach.

Then there are the very real hazards associated with mixing chemicals. One that always worries me is the confusion between toilet cleaner and toilet bleach. Many people have no idea what the difference is. The bottles even look quite similar. But they are not the same substance. Toilet cleaner is usually a strong acid, often hydrochloric acid, while toilet bleach contains sodium hypochlorite, NaClO. Mixing the two is a very bad idea, because the chemical reaction that occurs produces chlorine gas, which is particularly hazardous in a small, enclosed space such as a bathroom.

Okay, fine, toilet bleach and cleaner, noted, check. Is anyone selling those as refills anyway? Probably not. (Seriously, though, if you finish one bottle, make sure you don’t mix them in the toilet bowl as you open the next.)

But it may not be as straightforward as that. Have you ever used a citrus-scented cleaning product? They can be quite acidic. Combine them with bleach and, yep, same problem. What if someone refilled a container that contained traces of a bleach cleaner with one that was acidic, not realising? Not only would it be harmful to them, it could also be harmful for other people around them, including employees, especially if they suffer from a respiratory condition such as asthma.

There are risks associated with the type of container, too. Some plastics aren’t suitable to hold certain substances. Infinity Foods themselves pointed out that some people were trying to find drinking water bottles and plastic milk bottles with cleaning products. These types of bottles are usually made of high-density polyethylene (HDPE). This type of plastic is a good barrier for water, but not oily substances and solvents. Cleaning products could weaken the plastic, resulting in a leak which would be messy at best, dangerous at worst. That’s before we even think about the (un)suitability of the cap.

The type of plastic used to make water bottles isn’t suitable to hold oily substances.

Plus, think of the poor salesperson. How are they supposed to judge, in a shop, whether a particular bottle is safe for a particular product? I wouldn’t feel at all confident about that decision myself. It’s not even always easy to identify which plastic a bottle is made of, and that’s before you even start to consider the potential risks of mixing substances.

In fact, the more you think about it, the more Infinity Foods’ policy makes sense. If you say that you can only refill a bottle with the exact same substance it originally contained, and you insist that the labels have to match, well, that’s easy to check. It’s easy to be sure it’s safe. Yes, it might mean buying a bottle you wouldn’t have otherwise bought, but if you’re going to reuse it, at least it’s just the one bottle.

These concerns all arise from wanting to make sure the world is a safer and healthy place. We do need to cut down on single-use plastics, but taking risks with people’s health to do so surely misses the point.


Like the Chronicle Flask’s Facebook page for regular updates, or follow @chronicleflask on Twitter. Content is © Kat Day 2019. You may share or link to anything here, but you must reference this site if you do. If you enjoy reading my blog, please consider buying me a coffee through Ko-fi using the button below.
Buy Me a Coffee at ko-fi.com

The Chronicles of the Chronicle Flask: 2018

As has become traditional, I’m finishing off this year with a round-up of 2018’s posts. It’s been a good year: a few health scares which turned out to be nothing much to worry about, one which turned out to be a genuine danger, a couple of cool experiments and some spectacular shiny balls. So without further ado, here we go…

Things were a bit hectic at the start of this year (fiction writing was happening) and as a result January was quiet on the blog. But not on the Facebook page, where I posted a couple of general reminders about the silliness of alkaline diets which absolutely exploded, achieving some 4,000 shares and a reach (so Facebook tells me anyway) of over half a million people. Wow. And then I posted a funny thing about laundry symbols which went almost as wild. It’s a strange world.

February featured BPA: an additive in many plastics.

In February I wrote a piece about BPA (Bisphenol A), which was the chemical scare of the day. There’s always one around January/February time. It’s our penance for daring to enjoy Christmas. Anyway, BPA is a chemical in many plastics, and of course plastic waste had become – and remains – a hot topic. BPA is also used in a number of other things, not least the heat sensitive paper used to produce some shopping receipts. It’s not a harmless substance by any means, but it won’t surprise anyone to learn that the risks had, as is usually the case, been massively overstated. In a report, the European Food Safety Authority said that the health concern for BPA is low at their estimated levels of exposure. In other words, unless you’re actually working with it – in which case you should have received safety training – there’s no need to be concerned.

In March I recorded an episode for the A Dash of Science podcast, and I went on to write a post about VARD, which stands for Verify, Author, Reasonableness and Date. It’s my quick and easy way of fact-checking online information – an increasingly important skill these days. Check out the post for more info.

April ended up being all about dairy and vitamin D.

April was all about dairy after a flare-up on Twitter on the topic, and went on to talk about vitamin D. The bottom line is that everyone in the UK should be taking a small vitamin D supplement between about October and March, because northern Europeans simply can’t make vitamin Din their skin during these months (well, unless they travel nearer to the equator), and it’s not a nutrient we can easily get from our food. Are you taking yours?

May featured fish tanks, following a widely reported story about a fish-owner who cleaned out his tank and managed to release a deadly toxin that poisoned his entire family. Whoops. It turns that this was, and is, a real risk – so if you keep fish and you’ve never heard of this before, do have a read!

In June I wrote about strawberries, and did a neat experiment to show that strawberries could be used to make pH indicator. Who knew? You do, now! Check it out if you’re looking for some chemistry to amuse yourself over the holidays (I mean, who isn’t?). Did you know you can make indicators from the leaves of Christmas poinsettia plants, too?

Slime turned up again in July. And December. And will probably keep on rearing its slimy head.

July brought a subject which has turned up again recently: slime. I wrote about slime in 2017, too. It’s the gift that keeps on giving. This time it flared up because the consumer magazine and organisation Which? kept promoting research that, they claimed, showed that slime toys contain dangerous levels of borax. It’s all rather questionable, since it’s not really clear which safety guidelines they’re applying and whether they’re appropriate for slime toys. Plus, the limits that I was able to find are migration limits. In other words, it’s not appropriate to measure the total borax content of the slime and declare it dangerous – they should be looking at the amount of borax which is absorbed during normal use. Unless your child is eating slime (don’t let them do that), they’re never going to absorb enough borax to do them any harm. In other words, it’s a storm in a slimepot.

August was all about carbon dioxide, after a heatwave spread across Europe and there was, bizarrely, a carbon dioxide shortage which had an impact on all sorts of things from fizzy drinks to online shopping deliveries. It ended up being a long-ish post which spanned everything from the formation of the Earth, the discovery of carbon dioxide, fertilisers and environmental concerns.

September featured shiny, silver balls.

In September I turned my attention to a chemical reaction which is still to this day used to coat the inside of glass decorations with a thin layer of reflective silver, and has connections with biochemistry, physics and astronomy. Check it out for some pretty pictures of silver balls, and my silver nitrate-stained fingers.

In October I was lucky enough to go on a ‘fungi forage’ and so, naturally, I ended up writing all about mushrooms. Did you know that a certain type of mushroom can be used to make writing ink? Or that some mushrooms change colour when they’re damaged? No? You should go back and read that post, then! (And going back to April for a moment, certain mushrooms are one of the few sources of vitamin D.)

Finally, November ended up being all about water, marking the 235th anniversary of the day that Antoine Lavoisier formally declared water to be a compound. It went into the history of water, how it was proven to have the formula H2O, and I even did an experiment to split water into hydrogen and oxygen in my kitchen – did you know that was possible? It is!

As December neared, the research for my water piece led me to suggest to Andy Brunning of Compound Interest that this year’s Chemistry Advent might feature scientists from the last 24 decades of chemistry, starting in the 1780s (with Lavoisier and Paulze) and moving forward to the current day. This turned out to be a fantastic project, featuring lots of familiar and not quite so-familiar scientists. Do have a look if you didn’t follow along during December.

And that’s it for this year. I hope it’s been a good one for all my readers, and I wish you peace and prosperity in 2019! Suggestions for the traditional January Health Scare, anyone? (Let’s hope it’s not slime again, I’m getting really tired of that one now…)


Like the Chronicle Flask’s Facebook page for regular updates, or follow @chronicleflask on Twitter. All content is © Kat Day 2018. You may share or link to anything here, but you must reference this site if you do.

If you enjoy reading my blog, please consider buying me a coffee (I promise to use a reusable cup) through Ko-fi using the button below.
Buy Me a Coffee at ko-fi.com

Spectacular Strawberry Science!

Garden strawberries

Yay! It’s June! Do you know what that means, Chronicle Flask readers? Football? What do you mean, football? Who cares about that? (I jest – check out this excellent post from Compound Interest).

No, I mean it’s strawberry season in the U.K.! That means there will be much strawberry eating, because the supermarkets are full of very reasonably-priced punnets. There will also be strawberry picking, as we tramp along rows selecting the very juiciest fruits (and eating… well, just a few – it’s part of the fun, right?).

Is there any nicer fruit than these little bundles of red deliciousness? Surely not. (Although I do also appreciate a ripe blackberry.)

And as if their lovely taste weren’t enough, there’s loads of brilliant strawberry science, too!

This is mainly (well, sort of, mostly, some of the time) a chemistry blog, but the botany and history aspects of strawberries are really interesting too. The woodland strawberry (Fragaria vesca) was the first to be cultivated in the early 17th century, although strawberries have of course been around a lot longer than that. The word strawberry is thought to come from ‘streabariye’ – a term used by the Benedictine monk Aelfric in CE 995.

Woodland strawberries

Woodland strawberries, though, are small and round: very different from the large, tapering, fruits we tend to see in shops today (their botanical name is Fragaria × ananassa – the ‘ananassa’ bit meaning pineapple, referring to their sweet scent and flavour.

The strawberries we’re most familiar with were actually bred from two other varieties. That means that modern strawberries are, technically, a genetically modified organism. But no need to worry: practically every plant we eat today is.

Of course, almost everyone’s heard that strawberries are not, strictly, a berry. It’s true; technically strawberries are what’s known as an “aggregate accessory” fruit, which means that they’re formed from the receptacle (the thick bit of the stem where flowers emerge) that holds the ovaries, rather than from the ovaries themselves. But it gets weirder. Those things on the outside that look like seeds? Not seeds. No, each one is actually an ovary, with a seed inside it. Basically strawberries are plant genitalia. There’s something to share with Grandma over a nice cup of tea and a scone.

Anyway, that’s enough botany. Bring on the chemistry! Let’s start with the bright red colour. As with most fruits, that colour comes from anthocyanins – water-soluble molecules which are odourless, moderately astringent, and brightly-coloured. They’re formed from the reaction of, similar-sounding, molecules called anthocyanidins with sugars. The main anthocyanin in strawberries is callistephin, otherwise known as pelargonidin-3-O-glucoside. It’s also found in the skin of certain grapes.

Anthocyanins are fun for chemists because they change colour with pH. It’s these molecules which are behind the famous red-cabbage indicator. Which means, yes, you can make strawberry indicator! I had a go myself, the results are below…

Strawberry juice acts as an indicator: pinky-purplish in an alkaline solution, bright orange in an acid.

As you can see, the strawberry juice is pinky-purplish in the alkaline solution (sodium hydrogen carbonate, aka baking soda, about pH 9), and bright orange in the acid (vinegar, aka acetic acid, about pH 3). Next time you find a couple of mushy strawberries that don’t look so tasty, don’t throw them away – try some kitchen chemistry instead!

Peonidin-3-O-glucoside is the anthocyanin which gives strawberries their red colour. This is the form found at acidic pHs

The reason we see this colour-changing behaviour is that the anthocyanin pigment gains an -OH group at alkaline pHs, and loses it at acidic pHs (as in the diagram here).

This small change is enough to alter the wavelengths of light absorbed by the compound, so we see different colours. The more green light that’s absorbed, the more pink/purple the solution appears. The more blue light that’s absorbed, the more orange/yellow we see.

Interestingly, anthocyanins behave slightly differently to most other pH indicators, which usually acquire a proton (H+) at low pH, and lose one at high pH.

Moving on from colour, what about the famous strawberry smell and flavour? That comes from furaneol, which is sometimes called strawberry furanone or, less romantically, DMHF. It’s the same compound which gives pineapples their scent (hence that whole Latin ananassa thing I mentioned earlier). The concentration of furaneol increases as the strawberry ripens, which is why they smell stronger.

Along with menthol and vanillin, furaneol is one of the most widely-used compounds in the flavour industry. Pure furaneol is added to strawberry-scented beauty products to give them their scent, but only in small amounts – at high concentrations it has a strong caramel-like odour which, I’m told, can actually smell quite unpleasant.

As strawberries ripen their sugar content increases, they get redder, and they produce more scent

As strawberries ripen their sugar content (a mixture of fructose, glucose and sucrose) also changes, increasing from about 5% to 9% by weight. This change is driven by auxin hormones such as indole-3-acetic acid. At the same time, acidity – largely from citric acid – decreases.

Those who’ve been paying attention might be putting a few things together at this point: as the strawberry ripens, it becomes less acidic, which helps to shift its colour from more green-yellow-orange towards those delicious-looking purpleish-reds. It’s also producing more furaneol, making it smell yummy, and its sugar content is increasing, making it lovely and sweet. Why is all this happening? Because the strawberry wants (as much as a plant can want) to be eaten, but only once it’s ripe – because that’s how its seeds get dispersed. Ripening is all about making the fruit more appealing – redder, sweeter, and nicer-smelling – to things that will eat it. Nature’s clever, eh?

There we have it: some spectacular strawberry science! As a final note, as soon as I started writing this I (naturally) found lots of other blogs about strawberries and summer berries in general. They’re all fascinating. If you want to read more, check out…


Like the Chronicle Flask’s Facebook page for regular updates, or follow @chronicleflask on Twitter. All content is © Kat Day 2018. You may share or link to anything here, but you must reference this site if you do.

If you enjoy reading my blog, please consider buying me a coffee (I might spend it on an extra punnet of strawberries, mind you) through Ko-fi using the button below.
Buy Me a Coffee at ko-fi.com

 

The Chronicles of the Chronicle Flask: 2017

We’ve made it! Not only to 2018 (which was starting to look doubtful earlier in the year), but also to the Chronicle Flask’s 100th post. Which doesn’t seem that many, really, but since posts on here frequently run to 1500 words, that adds up to a rather more impressive-sounding 150,000 words or so. I mean, that’s like… half a Brandon Sanderson novel. Oh.

Anyway, it’s time for a yearly round-up. Here goes!

Last January I began with a post about acrylamide. We’d all been enjoying lots of lovely crispy food over Christmas; it was time to tell us about the terrible dangers of such reckless indulgence. The newspapers were covered with pictures of delicious-looking chips, toast and roast potatoes alongside scary headlines such as:  “Crunchy toast could give you cancer, FSA warns”. The truth was not quite so dramatic. Acrylamide does form when foods are cooked to crispiness, and it is potentially harmful, but the quantities which form in food are tiny, and very unlikely to cause you any serious harm unless you literally live on nothing but burnt toast. The FSA (Food Standards Agency) hadn’t significantly revised their guidelines, it turned out, but were in fact only suggesting that the food industry should be mindful of acrylamide levels in food and seek to reduce them as much as possible. That wouldn’t have made for quite such a good “your food is going to killllll you!” story though, I suppose.

In February the spikey topic of vaccination came up. Again. Vaccines are awesome. They protect us from deadly diseases. No, I don’t want to hear any nonsense about “Big Pharma“, and I definitely don’t want to hear how “natural immunity” is better. It’s not. At best, it might provide a similar level of protection (but not in every case), but it comes with having to suffer through a horrible, dangerous disease, whereas vaccination doesn’t. It ought to be a no-brainer. Just vaccinate your kids. And yourself.

It was Red Nose Day in the UK in March, which brought some chemistry jokes. Turns out all the best ones aren’t gone, after all. Did you hear about the PhD student who accidentally cooled herself to absolute zero? She’s 0K now.

April brought a post which ought to have been an April Fool’s joke, but wasn’t. Sceptics often point out that homeopathy is just sugar and water, but the trouble is, sometimes, it’s not. There’s virtually no regulation of homeopathy. As far as I’ve been able to establish, no one tests homeopathic products; no one checks the dilutions. Since a lot of the starting materials are dangerously toxic substances such as arsenic, belladona, lead and hemlock, this ought to worry people more than it does. There has been more than one accidental poisoning (perhaps most shockingly, one involving baby teething products). It really is time this stuff was banned, maybe 2018 will be the year.

In May I turned to something which was to become a bit of a theme for 2017: alkaline water. It’s not so much that it doesn’t do anything (although it really doesn’t), more the fact that someone is charging a premium for a product which you could literally make yourself for pennies. It’s only a matter of dissolving a pinch of baking soda (sodium bicarbonate) in some water.

June brought a selection of periodic tables because, well, why not? This is a chemistry blog, after all! And now we’ve finally filled up period seven they do have a rather elegant completness. 2019, by the way, has just been announced as the International Year of the Periodic Table of Chemical Elements, to coincide with IUPAC’s 100th anniversary and the 150th anniversary of Mendeelev’s discovery of periodicity (his presentation, The Dependence Between the Properties of of the Atomic Weights of the Elements, was made on 6th March 1869). Looks like 2019 will be an exciting year for chemists!

In July it was back to the nonsense of alkaline diets again, when Robert O. Young was finally sentenced to 3 years, 8 months in custody for conning vulnerable cancer patients into giving him large sums of money for ineffective and dangerous treatments. Good. Moving on.

August brought me back to a post that I’d actually started earlier in the year when I went to a March for Science event in April. It was all about slime, and August seemed like a good time to finally finish it, with the school holidays in full swing – what could be more fun on a rainy day at home than making slime? Slime was a bit of a 2017 craze, and there have been a few stories featuring children with severely irritated skin. But is this likely to be caused by borax? Not really. Turns out it’s actually very safe. Laundry detergents in general, not so much. In short, if you want to make slime the traditional way with PVA glue and borax, fill your boots. (Not really – your parents will be uninpressed.)

In September it was back to quackery: black salve. A nasty, corrosive concoction which is sold as a cancer cure. It won’t cure your cancer. It will burn a nasty great big hole in your skin. Do not mess with this stuff.

October carried on in a similar vein, literally. This time with a piece about naturopaths recommending hydrogen peroxide IVs as a treatment for lots of things, not least – you guessed it – cancer. Yes, hydrogen peroxide. The stuff you used to bleach hair. Intraveneously. Argh.

The puking pumpkin!

The end of the month featured a far better use for hydrogen peroxide, that of the puking pumpkin. Definitely one to roll out if, for any reason, you ever find yourself having to demonstrate catalysis.

November brought us, somewhat unseasonally, to tomatoes. Where is the best place to store them? Fridge or windowsill? Turns out the answer involves more chemistry than you might have imagined.

And then, finally, December. Looking for a last-minute Christmas gift? Why not buy a case of blk water? I mean, other than it’s an exorbitantly priced bottle of mysterious black stuff which doesn’t do any of the things it claims to do, and might actually get its colour from coal deposits, that is.

And that, dear friends and followers, is it for 2017! Happy New Year! Remember to be sceptical when the inevitable “deadly food” story appears in a few weeks….


Like the Chronicle Flask’s Facebook page for regular updates, or follow @chronicleflask on Twitter. All content is © Kat Day 2018. You may share or link to anything here, but you must reference this site if you do.


All comments are moderated. Abusive comments will be deleted, as will any comments referring to posts on this site which have had comments disabled.

 

 

 

Just what is blk water, and should you drink it?

Christmas is almost here! Are you ready yet? Are you fed up with people asking if you’re ready yet? Have you worked out what to buy for Great-uncle Nigel, who says he neither needs nor wants anything? Always a tricky scenario, that. Consumables are often a safe fallback position. They don’t clutter up the house, and who doesn’t enjoy a nice box of luxury biscuits, or chocolates, or a bottle of champagne, or spirts, or a case of blk water.

Wait, what?

Yes, this mysterious product turned up in my feed a few weeks ago. It’s water (well, so they say), but it’s black. Actually black. Not just black because the bottle’s black, black because the liquid inside it is… black.

It’s black water.

A bit like… cola. Only blacker, and not fizzy, or sweet, or with any discernable flavour other than water.

It raises many questions, doesn’t it? Let’s start with why. Obviously it’s a great marketing gimmick. It definitely looks different. It also comes with a number of interesting claims. The suppliers claim it contains “no nasties” and “only 2 ingredients”, namely spring water and “Fulvic Minerals” (sic). (Hang on, I hear you say, if it’s minerals, plural, surely that’s already more than two ingredients? Oh, but that’s only the start. Stay with me.)

It claims to “balance pH levels” and help “to regulate our highly acidic diets”. Yes, well, I think I’ve covered that before. Absolutely nothing you drink, or eat, does anything to the pH in any part of your body except, possibly, your urine – where you might see a small difference under some circumstances (but even if you do it doesn’t tell you anything significant about the impact of your diet on your long-term health). And bear in mind that a few minutes after you drink any kind of alkaline water it mixes with stomach acid which has a pH of around 2. Honestly, none of that alkaline “goodness” makes it past your pyloric sphincter.

Finally, blk water apparently “replenishes electrolytes”. Hm. Electrolytes are important in the body. They’re ionic species, which means they can conduct electricity. Your muscles and neurons rely on electrical activity, so they are quite important. Like, life or death important. But because of that our bodies are quite good at regulating them, most of the time. If you run marathons in deserts, or get struck down with a nasty case of food poisoning, or have some kind of serious health condition (you’d know about it) you might need to think about electrolytes, but otherwise most of us get what we need from the food and drink we consume normally every day.

Besides which, didn’t they say “only 2 ingredients”? The most common electrolytes in the body are sodium, potassium, magnesium, chloride, hydrogen phosphate and hydrogen carbonate. Most spring waters do contain some, if not all, of these, in greater or smaller amounts, but it’s not going to be enough to effectively “replenish” any of them. If, say, you are running marathons in the desert, the advice is actually to keep a careful eye on your water intake because drinking too much water can dangerously lower your sodium levels. Yes, there are sports drinks that are specifically designed to help with this, but they taste of salt and sugar and/or flavourings which have been added in a desperate attempt to cover up the salty taste. This is apparently not the case with blk water which, to repeat myself, contains “only 2 ingredients”.

And, according to the blk website the drink contains “0 mg of sodium per 500ml” so… yeah.

Speaking of ingredients, what about those so-called fulvic minerals? Maybe they’re the source of those all-important electrolytes (but not sodium)? And maybe they’re magically tasteless, too?

And perhaps, like other magical objects and substances, they don’t actually exist – as geologist @geolizzy told me on Twitter when I asked.

It’s not looking good for blk water (£47.99 for a case of 24 bottles) at this point. But hang on. Perhaps when they said fulvic minerals, what they meant was fulvic acid – which is a thing, or possibly several things – in a the presence of oh, say, some bicarbonate (*cough* 2 ingredients *cough*).

That could push the pH up to the stated 8-9, and didn’t we learn in school that:
acid + alkali –> salt + water
and maybe, if we’re being generous, we could call the salts of fulvic acids minerals? It’s a bit shaky but… all right.

So what are fulvic acids?

That’s an interesting question. I had never heard of fulvic acids. They do, as it turns out, have a Wikipedia page (Wikipedia is usually very reliable for chemical information, since no one has yet been very interested in spoofing chemical pages to claim things like hydrochloric acid is extracted from the urine of pregnant unicorns) but the information wasn’t particularly enlightening. The page did inform me that fulvic acids are “components of the humus” (in soil) and are  “similar to humic acids, with differences being the carbon and oxygen contents, acidity, degree of polymerization, molecular weight, and color.” The Twitter hive-mind, as you can see, was sending me down the same path…

A typical example of a humic acid.

Next stop, humic acids. Now we’re getting somewhere. These are big molecules with several functional groups. The chemists out there will observe that, yes, they contain several carboxylic acid groups (the COOH / HOOC ones you can see in the example) so, yes, it makes sense they’d behave as acids.

“No nasties”, blk said. “Pure” they said. When you hear those sorts of things, do you imagine something like this is in your drink? Especially one that, let’s be clear, is a component of soil?

Oh, hang on, I should’ve checked the “blk explained” page on the blk water website. There’s a heading which actually says “what are Fulvic Minerals”, let’s see now…

“Fulvic minerals are plant matter derived from millions of years ago that have combined with fulvic acid forming rare fulvic mineral deposits. They deliver some of the most powerful electrolytes in the world.”

“Fulvic minerals contain 77 other trace minerals, most of which have an influence on the healthiness of our body. They are very high in alkaline and when sourced from the ground contain a pH of 9.”

I don’t know about you, but I’m not totally convinced. I mean, as @geolizzy says in her tweet here (excuse the minor typo, she means humic, not humid),  it sounds a bit like… water contaminated with hydrocarbon deposits?

Yummy.

And, by the way, the phrase “very high in alkaline” is utterly meaningless. Substances are alkaline, or they contain substances which are alkaline. “Alkaline” is not a thing in itself. This is like saying my tea is high in hot when sourced from the teapot.

There’s one more thing to add. So far this might sound a bit weird but… probably safe, right? What could be more wholesome than a bit of soil? Didn’t your granny tell you to eat a pinch of soil to boost your immune system, or something? At worst it’s harmless, right?

Tap water is chlorine-treated to keep it free of nasty bacteria.

Maybe. But then again… water is often treated with chlorine compounds to keep it bacteria-free. Now, blk water is supposedly spring water, which isn’t usually treated. But hypothetically, let’s consider what happens when humic acids, or fulvic acids, or whatever we’re calling them, come into contact with chlorine-treated water.

Oh dear. It seems that dihaloacetonitriles are formed. (See also this paper.) This is a group of substances (possibly the best known one is dichloroacetonitrile) which are variously toxic and mutagenic. Let’s hope that spring water is totally unchlorinated, 100% “we really got it from out of a rock” spring water, then.

To sum up: it is black, and that’s kind of weird and a fun talking point – although if you like the idea of a black drink you can always drink cola. It doesn’t balance your pH levels – nothing does. I don’t believe it replenishes electrolyte levels either – how can it when it doesn’t contain sodium? – and I’m dubious about the “2 ingredients” claim (could you tell?). And the oh-so-healthy-sounding fulvic minerals are most likely due to contamination from coal deposits.

All in all, whilst it might not be quite such a conversation piece, I think it would be better to get Great-uncle Nigel a nice box of chocolates this year.


Like the Chronicle Flask’s Facebook page for regular updates, or follow @chronicleflask on Twitter. All content is © Kat Day 2017. You may share or link to anything here, but you must reference this site if you do.


All comments are moderated. Abusive comments will be deleted, as will any comments referring to posts on this site which have had comments disabled.

Buy Me a Coffee at ko-fi.com