Absurd alkaline ideas – history, horror and jail time

I’ve written about the absurdity of alkaline diets before, and found myself embroiled in more than one argument about the idea.

To sum up quickly, it’s the notion that our bodies are somehow “acidic”, and if only we could make them “alkaline” all our health problems – cancer included – would disappear. The way you make your body “alkaline” is, mainly, by eating lots of vegetables and some fruits (particularly citrus fruits – yes, I know, I know).

The eating fruit and vegetables bit aside (they’re good for you, you should eat them), it’s all patent nonsense. Our bodies aren’t acidic – well, other than where they’re supposed to be acidic (like our stomachs) – and absolutely nothing we eat or drink can have any sort of effect on blood pH, which is kept firmly between 7.35-7.45 by (mainly) our lungs and kidneys. And if your kidneys or lungs are failing, you need something a little stronger in terms of medical intervention than a slice of lemon.

But who first came up with this crazy idea?

Claude Bernard carried out experiments on rabbits.

Actually, we can probably blame a nineteenth century French biologist and physiologist, Claude Bernard, for kicking the whole thing off, when he noticed that if he changed the diet of rabbits from largely plant-based to largely animal-based (i.e. from herbivorous to carnivorous) their urine became more acidic.

This observation, followed by a lot of speculation by nutritionists and some really quite impressively dodgy leaps of reasoning (by others, I should stress – not Bernard himself), has lead us to where we are now: umpty-million websites and books telling anyone who will listen that humans need to cut out all animal products to avoid becoming “acidic” and thus ill.

Bernard’s rabbits were, it seems, quite hungry when he got them – quite possibly they hadn’t been fed – and he immediately gave them boiled beef and nothing else. Meat contains the amino acids cysteine and methionine, both of which can produce acid when they’re metabolised (something Bernard didn’t know at the time). The rabbits excreted this in their urine, which probably explains why it became acidic.

Now, many of you will have noticed several problems here. Firstly, rabbits are herbivores by nature (they do not usually eat meat in the wild). Humans aren’t herbivores. Humans are omnivores, and we have quite different digestive processes as a result. It’s not reasonable to extrapolate from rabbits to humans when it comes to diet. Plus, even the most ardent meat-lover probably doesn’t only eat boiled beef – at the very least people usually squeeze in a battered onion ring or a bit of coleslaw along the way. Most critically of all, urine pH has no direct relationship with blood pH. It tells us nothing about the pH of “the body” (whatever we understand that to mean).

The notion that a plant-based diet is somehow “alkaline” should really have stayed in the 19th century where it belonged, and at the very least not limped its way out of the twentieth. Unfortunately, somewhere in the early 2000s, a man called Robert O Young got hold of the idea and ran with it.

Young’s books – which are still available for sale at the time of writing – describe him as “PhD”, even though he has no accredited qualification.

Boy, did he run with it. In 2002 he published a book called The pH Miracle, followed by The pH Miracle for Diabetes (2004), The pH Miracle for Weight Loss (2005) and The pH Miracle Revised (2010).

All of these books describe him either as “Dr Robert O Young” or refer to him as “PhD”. But he has neither a medical qualification nor a PhD, other than one he bought from a diploma mill – a business that offers degrees for money.

The books all talk about “an alkaline environment” and state that so-called acidic foods and drinks (coffee, tea, dried fruit, anything made with yeast, meat and dairy, amongst other foodstuffs) should be avoided if not entirely eliminated.

Anyone paying attention will quickly note that an “alkaline” diet is basically a very restrictive vegan diet. Most carbohydrate-based foods are restricted, and lots of fruits and nuts fall into the “moderately” and “mildly” acidic categories. Whilst a vegan diet can be extremely healthy, vegans do need to be careful that they get the nutrients they need. Restricting nuts, pulses, rice and grains as well as removing meat and dairy could, potentially, lead to nutritional deficiencies.

Young also believes in something called pleomorphism, which is a whole other level of bonkers. Essentially, he thinks that viruses and bacteria aren’t the cause of illnesses – rather, the things we think are viruses and bacteria are actually our own cells which have changed in response to our “acidic environments”. In Young’s mind, we are making ourselves sick – there is one illness (acidosis) and one cure (his alkaline diet).

It’s bad enough that he’s asserting such tosh and being taken seriously by quite a lot of people. It’s even worse that he has been treating patients at his ranch in California, claiming that he could “cure” them of anything and everything, including cancer.

One of his treatments involved intravenous injections of solutions of sodium hydrogen carbonate, otherwise known as sodium bicarbonate or baking soda. This common cookery ingredient does produce an alkaline solution (about pH 8.5) when dissolved in water, but remember when I said blood pH was hard to shift?

Screenshot from a BBC article, see http://www.bbc.co.uk/news/magazine-38650739

Well, it is, and for good reason. If blood pH moves above the range of 7.35-7.45 it causes a condition called alkalosis. This can result in low blood potassium which in turn leads to muscle weakness, pain, and muscle cramps and spasms. It can also cause low blood calcium, which can ultimately result in a type of seizure. Putting an alkaline solution directly into somone’s blood is genuinely dangerous.

And this is before we even start to consider the fact that someone who was not a medical professional was recommending, and even administering, intravenous drips. Which, by the way, he was reportedly charging his patients $550 a pop to receive.

Young came to the attention of the authorities several times, but always managed to wriggle out of trouble. That is, until 2014, when he was arrested and charged with practising medicine without a license and fraud. In February last year, he was found guilty, but a hung jury caused complications when they voted 11-1 to convict on the two medical charges, but deadlocked 8-4 on fraud charges.

Finally, at the end of June 2017, he was sentenced. He was given three years, eight months in custody, but due to the time he’s already spent in custody and under house arrest, he’s likely to actually serve five months in jail.

He admitted that he illegally treated patients at his luxury Valley Center ranch without any medical or scientific training. Perhaps best of all, he was also made to publicly declare that he is not microbiologist, hematologist, medical doctor or trained scientist, and that he has no post-highschool educational degrees from any accredited school.

Prosecuting Deputy District Attorney Gina Darvas called Young the “Wizard of pHraud”, which is rather apt. Perhaps the titles on his books could be edited to read “Robert O Young, pHraud”?


Like the Chronicle Flask’s Facebook page for regular updates, or follow @chronicleflask on Twitter. All content is © Kat Day 2017. You may share or link to anything here, including the images, but you must reference this site if you do.


All comments are moderated. Abusive comments will be deleted, as will any comments referring to posts on this site which have had comments disabled.

Hazardous homeopathy: ‘ingredients’ that ought to make you think twice

Would you take a medicine made with arsenic? Or deadly nightshade? Lead? Poison ivy?

You’d ask some serious questions first, at least, wouldn’t you? Is it definitely safe? Or, more accurately, are the odds better than even that it will make me better without causing horrible side-effects? Or, you know, killing me?

There ARE medicines that are legitimately made from highly toxic compounds. For example, the poison beloved of crime writers such as Agatha Christie, arsenic trioxide, is used to treat acute promyelocytic leukemia in patients who haven’t responded to other treatments. Unsurprisingly, it’s not without risks. Side-effects are unpleasant and common, affecting about a third of patients who take it. On the other hand, acute promyelocytic leukemia is fatal if untreated. A good doctor would talk this through with a patient, explain both sides, and leave the final choice in his or her properly-informed hands. As always in medicine, it’s a question of balancing risks and benefits.

Would you trust something with no proven benefit and a lot of potential risk? There are, it turns out, a swathe of entirely unregulated mixtures currently being sold in shops and online which clearly feature the substances I listed at the beginning. And more. Because they are all, supposedly, the starting materials in certain homeopathic remedies.

Homeopaths like to use unfamiliar, usually Latin-based, names which somewhat disguise the true nature of their ingredients. Here’s a short, but by no means comprehensive, list. (You might find remedies labelled differently but these are, as far as I can tell, the most common names given to these substances.)

If you haven’t heard of some of these, I do urge you to follow the links above, which will largely take you pages detailing their toxicology. Spoiler: the words “poison”, “deadly” and “fatal” feature heavily. These are nasty substances.

There are some big ironies here, and I’m not referring to the metal. For example, a common cry of anti-vaccinationists is that vaccines contain animal tissues – anything and everything from monkey DNA to dog livers. But many also seem to be keen to recommend homeopaths and courses of homeoprophylaxis – so-called “homeopathic vaccines” – which use bodily fluids such as pus and blood as starting materials.

Now, at this point I’m sure some of you are thinking, hang on a minute: aren’t you always telling us that “the dose makes the poison“? And aren’t homeopathic remedies diluted so much that none of the original substance remains, so they’re just placebos?

Yes, I am, and yes, they are.

Does anyone test homeopathic remedies to make sure there’s nothing in them….?

In THEORY. But here’s the problem: who’s testing these mixtures to make sure that the dilutions are done properly? And how exactly are they doing that (if they are)?

One technique that chemists use to identify tiny quantities of substance is gas chromatography (GC). This is essentially a high-tech version of that experiment you did at school, where you put some dots of different coloured ink on a piece of filter paper and watched them spread up the paper when you put it in some water.

GC analysis is brilliant at identifying tiny quantities of stuff. 10 parts per million is no problem for most detectors, and the most sensitive equipment can detect substances in the parts per billion range. Homeopathy dilutions are many orders of magnitude higher than this (30c, for example, means a dilution factor of 1060), but this doesn’t matter – once you get past 12c (a factor of 1024) you pass the Avogadro limit.

This is because Avogadro’s number, which describes the number of molecules in what chemists call a “mole” of a substance, is 6×1023. For example, if you had 18 ml of water in a glass, you’d have 6×1023 molecules of H2O. So you can see, if you’ve diluted a small sample by a factor of 1024 – more than the total number of molecules of water you had in the first place – the chances are very good that all you have is water. There will be none of the original substance left. (This, by the way, is of no concern to most homeopaths, who believe that larger dilutions magically produce a stronger healing effect.)

What if the sample ISN’T pure water after it’s been diluted?

If you carried out GC analysis of such a sample, you should find just pure water. Indeed, if you DIDN’T find pure water, it should be cause for concern. Potassium cyanide, for example, is toxic at very low levels. The lethal dose is is only 0.2-0.3 grams, and you’d suffer unpleasant symptoms long before you were exposed to that much.

So what if the dilutions somehow go wrong? What if some sample gets stuck in the bottle? Or on the pipette? Or a few dilution steps get skipped for some reason?

Are these largely unregulated companies rigorously quality-checking their remedies?

Well, maybe. It’s possible some producers are testing their raw materials for purity (ah yes, another question: they CLAIM they’re starting with, say, arsenic, but can we be certain?), and perhaps testing the “stability” of their products after certain periods of time (i.e. checking for bacterial growth), but are they running tests on the final product and checking that, well, there’s nothing in it?

And actually, isn’t this a bit of a conflict? If the water somehow “remembers” the chemical that was added and acquires some sort of “vibrational energy”, shouldn’t that show up somehow in GC analysis or other tests? If your tests prove it’s pure water, indistinguishable from any other sample of pure water, then… (at this point homeopaths will fall back on arguments such as “you can’t test homeopathy” and “it doesn’t work like that”. The name for this is special pleading.)

A warning was issued in the U.S. after several children became ill.

Am I scaremongering? Not really. There’s at least one published case study describing patients who suffered from arsenic poisoning after using homeopathic preparations. In January this year the U.S. Food and Drug Administration issued a warning about elevated levels of belladonna (aka deadly nightshade) in some homeopathic teething products. Yes, teething products. For babies. This warning was issued following several reports of children becoming ill after using the products. The FDA said that its “laboratory analysis found inconsistent amounts of belladonna, a toxic substance, in certain homeopathic teething tablets, sometimes far exceeding the amount claimed on the label.”

Now, admittedly, I’m based in the U.K. and these particular teething remedies were never readily available here. But let’s just type “homeopathy” into the Boots.com (the British high-street pharmacy) website and see what pops up… ah yes. Aconite Pillules, 30c, £6.25 for 84.

What happens if you search for “homeopathy” on the Boots.com website?

Have you been paying attention lovely readers? Aconite is…. yes! Monkshood! One of the most poisonous plants in the garden. Large doses cause instant death. Smaller doses cause nausea and diarrhea, followed by a burning and tingling sensation in the mouth and abdomen, possibly muscle weakness, low blood pressure and irregular heartbeat.

I must stress at this point that there is no suggestion, absolutely none whatsoever, that any of the products for sale at Boots.com has ever caused such symptoms. I’m sure the manufacturers check their preparations extremely carefully to ensure that there’s absolutely NO aconite left and that they really are just very small, very expensive, sugar pills.

Well, fairly sure.

In summary, we seem to be in a situation where people who proclaim that rigorously-tested and quality-controlled pharmaceuticals are “toxic” also seem to be happy to use unregulated homeopathic remedies made with ACTUALLY toxic starting materials.

I wonder if the new “documentary” about homeopathy, Just One Drop, which is being screened in London on the 6th of April will clarify this awkward little issue? Somehow, I doubt it. Having watched the trailer, I think it’s quite clear which way this particular piece of film is going to lean.

One last thing. Some homeopathic mixtures include large quantities of alcohol. For example, the Bach Original Flower Remedies are diluted with brandy and contain approximately 27% alcohol (in the interests of fairness, they do also make alcohol-free versions of some of their products and, as I’ve recently learned, they may not be technically homeopathic). Alcohol is a proven carcinogen. Yes, I know, lots of adults drink moderate quantities of alcohol regularly and are perfectly healthy, and the dose from a flower remedy is minuscule, but still, toxins and hypocrisy and all that.

There are cheaper ways to buy brandy than Bach Flower Remedies.

Amusingly, the alcohol in these remedies is described an “inactive” ingredient. It’s more likely to be the only ACTIVE ingredient. And since Flower Remedies retail for about £7 for 20 ml (a mighty £350 a litre, and they’re not even pure brandy) may I suggest that if you’re looking for that particular “medicine” you might more wisely spend your money on a decent bottle of Rémy Martin?


Like the Chronicle Flask’s Facebook page for regular updates, or follow @chronicleflask on Twitter. In need of a groovy new mug for your oh-so-healthy coffee? Check out this page.


All comments are moderated. Abusive comments will be deleted, as will any comments referring to posts on this site which have had comments disabled.

The Chronicles of the Chronicle Flask: 2016

2016 is limping to its painful conclusion, still tossing out last-minute nasty surprises like upturned thumb tacks in the last few metres of a marathon. But the year hasn’t been ALL bad. Some fun, and certainly interesting, things happened too. No, really, they did, honestly.

So with that in mind, let’s have a look back at 2016 for the Chronicle Flask….

January kicked off with a particularly egregious news headline in a well-known broadsheet newspaper: Sugar found in ketchup and Coke linked to breast cancer. Turns out that the sugar in question was fructose. Yes, the sugar that’s in practically everything, and certainly everything that’s come from a plant. So why did the newspaper in question choose ketchup and Coke for their headline instead of, oh, say, fruit juice or honey? Surely not just in an effort to sell a few more newspapers after the overindulgent New Year celebrations. Surely.

octarineThere was something more lighthearted to follow when IUPAC  verified the discoveries of elements 113, 115, 117 and 118. This kicked off lots of speculation about the elements’ eventual names, and the Chronicle Flask suggested that one of them should be named Octarine in honour of the late Sir Terry Pratchett. Amazingly, this suggestion really caught everyone’s imagination. It was picked up in the national press, and the associated petition got over 51 thousand signatures!

In February I wrote a post about the science of statues, following the news that a statue to commemorate Sir Terry Pratchett and his work had been approved by Salisbury City Council. Did you know that there was science in statues? Well there is, lots. Fun fact: the God of metalworking was called Hephaestus, and the Greeks placed dwarf-like statues of him near their Hearths – could this be where the fantasy trope of dwarves as blacksmiths originates?

MCl and MI are common preservatives in cosmetic products

MCl and MI are common preservatives in cosmetic products

My skeptical side returned with a vengeance in March after I read some online reviews criticising a particular shampoo for containing a substance known as methylchloroisothiazolinone. So should you be scared of your shampoo? In short, no. Not unless you have a known allergy or particularly sensitive skin. Otherwise, feel free to the pick your shampoo based on the nicest bottle, the best smell, or the forlorn hope that it will actually thicken/straighten/brighten your hair as promised, even though they never, ever, ever do.

Nature Chemistry published Another Four Bricks in the Wall in April – a piece all about the potential names of new elements, partly written by yours truly. The month also brought a sinus infection. I made the most of this opportunity by writing about the cold cure that’s 5000 years old. See how I suffer for my lovely readers? You’re welcome.

In May I weighed in on all the nonsense out there about glyphosate (and, consequently, learned how to spell and pronounce glyphosate – turns out I’d been getting it wrong for ages). Is it dangerous? Nope, not really. The evidence suggests it’s pretty harmless and certainly a lot safer than most of its alternatives.

may-facebook-postSomething else happened in May: the Chronicle Flask’s Facebook page received this message in which one of my followers told me that my post on apricot kernels had deterred his mother from consuming them. This sort of thing makes it all worthwhile.

In June the names of the new elements were announced. Sadly, but not really very surprisingly, octarine was not among them. But element 118 was named oganesson and given the symbol Og. Now, officially, this was in recognition of the work of Professor Yuri Oganessian, but I for one couldn’t help but see a different reference. Mere coincidence? Surely not.

July brought another return to skepticism. This time, baby wipes, and in particular a brand that promise to be “chemical-free”. They’re not chemical-free. Nothing is chemical-free. This is a ridiculous label which shouldn’t be allowed (and yet, inexplicably, is still in use). It’s all made worse by the fact that Water Wipes contain a ‘natural preservative’ called grapefruit seed extract which, experiments have shown, only actually acts as a preservative when it’s contaminated with synthetic substances. Yep. Turns out some of Water Wipes claims are as stinky as the stuff they’re designed to clean up.

Maria Lenk Aquatic Enter, Tuesday, Aug. 9, 2016. (AP Photo/Matt Dunham)

Maria Lenk Aquatic Enter, Tuesday, Aug. 9, 2016. (AP Photo/Matt Dunham)

August brought the Olympics, and speculation was rife about what, exactly, was causing the swimming pools to turn such strange shades of green. Of course, the Chronicle Flask knew the correct solution…

August also saw MMS and CD reared their ugly heads on social media again. CD (chlorine dioxide) is, lest we forget, a type of bleach solution which certain individuals believe autistic children should be made to drink to ‘cure’ them. Worse, they believe such children should be forced to undergo daily enemas using CD solutions. I wrote a summary page on MMS (master mineral solution) and CD, as straight-up science companion to the commentary piece I wrote in 2015.

mugsSeptember took us back to pesticides, but this time with a more lighthearted feel. Did you know that 99.99% of all the pesticides you consume are naturally-occurring? Well, you do if you regularly read this blog. The Chronicle Flask, along with MugWow, also produced a lovely mug. It’s still for sale here, if you need a late Christmas present… (and if you use the code flask15 you’ll even get a discount!)

In October, fed up with endless arguments about the definition of the word ‘chemical’ I decided to settle the matter once and for all. Kind of. And following that theme I also wrote 8 Things Everyone Gets Wong About ‘Scary’ Chemicals for WhatCulture Science.

Just in case that wasn’t enough, I also wrote a chapter of a book on the missing science of superheroes in October. Hopefully we should see it in print in 2017.

Sparklers are most dangerous once they've gone out.

Sparklers are most dangerous once they’ve gone out.

I decided to mark Fireworks Night in November by writing about glow sticks and sparklers. Which is riskier? The question may not be as straightforward as you’d imagine. This was followed by another WhatCulture Science piece, featuring some genuinely frightening substances: 10 Chemicals You Really Should Be Scared Of.

And that brings us to December, and this little summary. I hope you’ve enjoyed the blog this year – do tell your friends about it! Remember to follow @ChronicleFlask on Twitter and like fb.com/chronicleflask on Facebook – both get updated more or less daily.

Here’s wishing all my lovely readers a very Happy New Year – enjoy a drop of bubbly ethanol solution and be careful with the Armstrong’s mixture…. 

See you on the other side!

new-year-1898553_960_720

8 Things Everyone Gets Wrong About ‘Scary’ Chemicals

scaryChemicals. The word sounds a little bit scary, doesn’t it? For some it probably conjures up memories of school, and that time little Joey heated something up to “see what would happen” and you all had to evacuate the building. Which was actually good fun – what’s not to love about an unplanned fire drill during lesson time?

But for others the word has more worrying associations. What about all those lists of additives in foods, for starters? You know, the stuff that makes it all processed and bad for us. Don’t we need to get rid of all of that? And shouldn’t we be buying organic food, so we can avoid ….

….Read the rest of this article at WhatCulture Science.


This is my first article for WhatCulture Science – please do click the link and read the rest!


Like the Chronicle Flask’s Facebook page for regular updates, or follow @chronicleflask on Twitter. In need of a groovy new mug? Check out this page.

The cold cure that’s 5000 years old

Could we just remove the front of my face? I think it'd be less painful....

Could we just remove the front of my face? I think it’d be less painful….

A couple of days ago I was struck down with a sinus infection. This is something I thought I’d had before, but it turns out that what I’d actually had before was an uncomfortably stuffy nose. Whereas this, on the other hand, was the sensation that someone had put my forehead in a vice and was inflating my eyeballs with a bicycle pump.

I explained this to the doctor. He nodded sympathetically and suggested a drug that’s been used, in one form or another, for five thousand years.

If you’re new to this blog, you might be wondering at this point whether, when I say ‘doctor’ I actually mean ‘naturopath’ (or some other thing that translates as ‘not a doctor’). But, no, this was a properly qualified member of the medical profession. Well, I hope he is. I mean, I haven’t looked him up on the General Medical Council’s list. I assume my surgery did that. I’m sure they did. Anyway….

207px-(+)-Pseudoephedrin

Pseudoephedrine

What was this mysterious, ancient medicine? It was pseudoephedrine, otherwise known (in the UK anyway) by the brand name Sudafed®.

It’s a drug many of us have probably taken to help with cold symptoms, and not given much thought to, but it’s actually got a pretty interesting story.

Pseudoephedrine falls under the class of amphetamines. The ‘amine’ bit of that word refers to the NH group (or it might be NH2, or even just N) and, being one of the fundamental bits in proteins, it turns up in lots of biologically active molecules. It’s in paracetamol (acetaminophen) for example, and antihistamine drugs used to treat allergies, as well as many molecules that occur naturally in the body, such as dopamine and adrenaline (epinephrine).

It’s also there in methamphetamine (commonly known as ‘crystal meth’ or just ‘meth’). In fact, pseudoephedrine and methamphetamine are chemically similar, and the latter can be synthesised from the former (I’m not recommending any of my readers try this; it’s very much frowned upon from a legal point of view). For this reason, the sale of pseudoephedrine is tightly regulated; in the UK you can only buy it over the counter in a licensed pharmacy, and then only in small blister packs. (Cold medications that you can pick up from the shelf usually contain the far less effective phenylephrine.)

800px-Ephedra_sinica_alexlomas

The Ephedra sinica plant

Where does it come from? These days, pseudoephedrine is made in a three-step process, the first of which involves yeast fermentation, but it was first isolated from plants, in particular Ephedra sinica, also known as Chinese ephedra or Ma Huang.

This is where the five thousand years comes in, because these plants have been used in Chinese medicine for millennia. In fact, Ephedra is one of the oldest known medicines. It’s described in the legendary Chinese pharmacopoeia Pen-tsao Kang-mu, and became a common part of Chinese prescriptions to treat cold symptoms, fevers and asthma.

The first substance in Ephedra plants to be used in western medicine was Ephedrine. It was isolated in 1885 by a Japanese chemist called Nagai Nagayoshi, but it was then rather forgotten about until 1920s, when it was rediscovered and became a popular treatment for asthma.

In those days, steroid inhalers had yet to be developed, and the standard treatment for asthma was adrenaline. This was problematic, because adrenaline isn’t orally stable: it had to be injected. Ephedrine, by contrast, would work if swallowed as a pill, making it much easier to use.

Ephedrine_enantiomers

Ephedrine is made up of a mixture of these two mirror-image molecules

Unfortunately, ephedrine had rather unpleasant side-effects. It caused raised blood pressure, and then there were a number of other potential problems such as dizziness, trembling, headache, irregular heartbeat and even, in some cases, heart attack and stroke. Worth the risk perhaps, if you’re in the middle of a life-threatening asthma attack, but not something you’d want to use routinely.

The story goes (although I haven’t been able to verify this by finding, say, a recorded study) that when the use of the whole Ephedra plant as a treatment was compared to the use of pure ephedrine, people noticed that the side-effects were much less severe, even though the whole plant still appeared to be an effective treatment. This caused researchers to wonder whether there was some other substance in Ephedra that had subtly different effects on the body.

Whether this observation was really made or not, it turned out there was another active molecule in the Ephedra plant. It was first separated from ephedrine in in 1927, and was given the name pseudoephedrine, literally ‘false ephedrine’. Ephedrine and pseudoephedrine are structural isomers: they have the same number and type of atoms, ordered slightly differently. This is a common theme in medicinal chemistry: switching just a couple of atoms around can make big differences to the way the human body reacts to drugs.

Like ephedrine, pseudoephedrine was an effective bronchodilator and vasoconstrictor (causing blood vessels to shrink), but its effects were less dramatic, which made it a lot safer. It doesn’t raise blood pressure nearly as much, and is far less likely to cause something really nasty like a heart attack. That said, it’s not side-effect free, and it should go without saying that anyone with an existing medical condition should speak to their doctor before using it. Likewise, don’t go messing about with Ephedra plants.

Vasoconstriction is why pseudoephedrine such a good decongestant. Less fluid leaves the shrunken blood vessels and therefore less fluid enters the throat, nose and sinus linings. This reduces inflammation mucus production, and the incessant pounding of a sinus headache eases up a bit.

Of course, pseudoephedrine doesn’t somehow know to restrict itself to your nose and lungs. Blood vessels throughout the body are affected. This can be useful – for example, pseudoephedrine can help to treat ear infections – but it can also result in other, less desirable effects. In particular, pseudoephedrine suppresses breast-milk production, and for this reason shouldn’t be used by new mothers trying to establish breastfeeding. It might also interfere with mucus membranes in the vagina, potentially causing a small reduction in fertility and, not surprisingly, a substance which is a vasoconstrictor can also aggravate erectile dysfunction. Basically, if you’re trying to make a baby this might be one to avoid, although if you’re stuffed up with a cold you might not feel like it anyway, so perhaps it doesn’t matter.

Anyway, I know what you’re all desperately wondering: But, Chronicle Flask, did it sort out your sinus infection?!

dara

“Science knows it doesn’t know everything; otherwise, it’d stop.”

Well, actually, I’m relieved to report that after taking three doses of pseudoephedrine twice a day for a couple of days the pain has eased up considerably. Of course, there’s nothing antiviral (or antibacterial) in this medicine, but it would appear that my immune system managed to take care of the infection for me, once the inflammation was reduced and the excess fluid which was causing the pressure was able to (yuck) drain away.

To quote the comedian Dara O’Briain:
“‘Oh, herbal medicine’s been around for thousands of years!’ Indeed it has, and then we tested it all, and the stuff that worked became ‘medicine’.”


You can follow The Chronicle Flask on Facebook, or on Twitter as @ChronicleFlask

Words of woo: what does ‘alkalise’ mean?

220px-Marketvegetables

‘alkaline’ diets usually revolve around eating lots of fruit and vegetables – no bad thing, but it won’t change your body’s pH

If you hang around in the unscientific chunks of the internet for any length of time, as I find myself doing from time to time, you start to come across certain words that get used over and over. They are usually words that sound very sciency, and they’re being used to make things sound legitimate when, if we’re honest, they’re really not.

One such word is ‘alkalise’ (or ‘alkalize’). I’ve met it often ever since I wrote my post ‘Amazing alkaline lemons?‘. So, what does this word mean?

Good question. Google it, and at least the first three pages of links are about diets and how to ‘alkalise your body’ featuring such pithy lines as:

“It’s not really a diet… it’s a way of eating” (is there a difference?)
“Alkalise or live a life of misery” (gosh)
“Alkalise or die” (blimey)
“Alkaline water” (apparently this is a thing)
“Why it’s important to alkalise your water” (using our overpriced products)

In fact, I had to click through several pages of Google links before I even got to something that was simply a definition. (I’m aware that Google personalises its search results, so if you try this yourself you might have a different experience.) Certainly, there are no legitimate chemistry, biochemistry – or anything else like that – articles in sight.

Hunt specifically for a definition and you get turn basic and less acidic; “the solution alkalized”‘ (The Free Dictionary), to make or become alkaline. (Dictionary.com) and, simply, ‘to make alkaline’ (Collins).

Universal_indicator_paper

pH 7 is neutral, more than 7 is basic

The first of these is interesting, because it refers to ‘basic’. Now, as I’ve explained in another post, bases and alkalis are not quite the same thing. In chemistry a base is, in simple terms, anything that can neutralise an acid. Alkalis, on the other hand, are a small subset of this group of compounds: specifically the soluble, basic, ionic salts of alkali metals or alkaline earth metals.

Since there are only six alkali metals (only five that are stable) and only six alkaline earth metals (the last of which is radium – probably best you steer clear of radium compounds) there are a rather limited number of alkalis, namely: lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, caesium hydroxide, beryllium hydroxide, magnesium hydroxide, calcium hydroxide, strontium hydroxide, barium hydroxide and radium hydroxide. There you go. That’s it. That’s all of them. (Okay, yes, under the ‘soluble in water’ definition we could also include ammonium hydroxide, formed by dissolving the base, ammonia, in water – that opens up a few more.)

This, you see, is why real chemists tend not to use the term ‘alkalise’ very often. Because, unless the thing you’re starting with does actually form one of these hydroxides (there are some examples, mostly involving construction materials), it’s a little bit lead-into-gold-y, and chemists hate that. The whole not changing one element into another thing (barring nuclear reactions, obviously) is quite fundamental to chemistry. That’s why your chemistry teacher spent hours forcing you to balance equations at school.

No, the relevant chemistry word is ‘basify‘. This is such a little-known word that even my spell checker complains, but it’s just the opposite of the slightly better-known ‘acidify’ – in other words, basify means to raise the pH of something by adding something basic to it. Google ‘basify’ and you get a very different result to that from ‘alkalise’. The first several links are dictionary definitions and grammar references, and after that it quickly gets into proper chemistry (although I did spot one that said ‘how to basify your urine’ – sigh).

What does all this mean? Well, if you see someone using the word “alkalising” it should raise red flags. I’d suggest that unless they’re about to go on to discuss cement (calcium hydroxide is an important ingredient in construction materials) cocoa production or, possibly, certain paint pigments, then you can probably write off the next few things they say as total nonsense. If they’re not discussing one of the above topics, the chances are good that what they actually know about chemistry could safely fit on the back of a postage stamp, with space to spare, so nod, smile and make your escape.

For the record, you absolutely don’t need to alkalise your diet. Or your urine*. Really. You don’t.

And please don’t waste your money on alkaline water.

—-

Follow The Chronicle Flask on Facebook for regular updates and other interesting chemistry and science bits and pieces.

Lemon

There’s no good evidence that drinking lemon juice has a significant impact on urine pH.

* In the event that you actually have problematically acidic urine, perhaps due to some medical condition, there are proven treatments that will neutralise it (i.e. take it to around pH 7, which is the pH urine ought to be, roughly). In particular, sodium citrate powder can be dissolved in water to form a drinkable solution. Of course, if this is due to an infection you should see a doctor: you might need antibiotics – urinary tract infections can turn nasty. Yes, I am aware that the salt of the (citric) acid in lemons is sodium citrate, however there is no good evidence that drinking lemon juice actually raises urine pH by a significant amount. And yes, I’m also aware that dietary intake of citrate is known to inhibit the formation of calcium oxalate and calcium phosphate kidney stones, but that’s a whole other thing. If you have kidney stones there are a number of dietary considerations to make, not least of which might be to cut down on your consumption of certain fruits and vegetables such as strawberries and spinach (and ironically, if you look at some of the – entirely unscientific – lists of acid-forming and alkali-forming foods these are almost always on the alkaline side).

Does drinking alcohol actually cause dehydration?

alcohol-effects

Today I came across this article: Drinking water doesn’t prevent a hangover, study says, which includes the memorable line: “[the] study concluded, the only way to prevent a hangover is to drink less alcohol.”

Now, at first sight, you might think that surely this simply another piece of work from the University of the Bleedin’ Obvious.

But hang on. Alcohol does dehydrate you, doesn’t it? Everyone knows that! After all, don’t you wee more when you go drinking, and wake up all sweaty and with a dry mouth after a ‘heavy night’? Surely this is all evidence of fluid loss? Am I really about to suggest we should consign ‘alcohol causes dehydration” to the collection of alcohol-based myths such as mixing drinks gives you a worse hangover (only if you drink more as a result), a night cap will help you sleep (only temporarily, overall it tends to disrupt sleep), drinking beer will cause a ‘beer belly’ (too much of any type of drink can cause weight gain), and so on?

Well…

1024px-Ethanol-3D-balls

There are many alcohols; ethanol is the one we drink.

Firstly, what is alcohol or, more specifically (the word ‘alcohol’ actually refers to a group of compounds), ethanol? It’s a simple molecule, containing only two carbon atoms, an oxygen and some hydrogen atoms. It’s produced, as we all learned at school (or possibly when attempting home-brewing), by yeast during the process of fermentation. Feed this clever little single-celled organism some sugar and voilà, it produces ethanol (C2H5OH) and carbon dioxide via a remarkably simple equation:

C6H12O6 –> 2C2H5OH + 2CO2

220px-Marula01

Marula fruit naturally ferments.

Humans learned this trick a long time ago and have been brewing for literally thousands of years. In fact it doesn’t even require human intervention – marlula fruit is particularly famous for becoming naturally alcoholic (although stories of monkeys and elephants using it to get drunk might be somewhat exaggerated).

We like drinking because, of course, of what it does to us. In medical terms, it’s a central nervous system depressant with significant psychoactive effects (sounds fun, eh?) In English, it reduces anxiety, making drinkers feel relaxed and happy. This accompanies a decrease in motor skills of course, which is why drinking and driving is illegal virtually everywhere (although exact definitions of what this means do vary).

But while alcohol is all natural, it’s not what you’d consider healthy. Every now and then someone drags out some data that suggests that low to moderate alcohol intake is good for you, but this sadly appears to be more wishful thinking than good science. In terms of disease, alcohol consumption has been linked with stroke, high blood pressure, several liver diseases, pancreatitis, a weakened immune system and a handful of cancers including mouth, throat, liver and breast cancers.

In fact, alcohol has been categorised by the International Agency for Research on Cancer as a group 1 carcinogen, which puts it in the company of such other delights as asbestos, radium isotopes, ultraviolet radiation, diesel exhaust and tobacco.

Enjoying-Dinner-copy

Give up alcohol before you worry about your latte ingredients.

Of course, the dose makes the poison. Lots of people enjoy low to moderate alcohol consumption quite safely. Still, I have to admit to being amused by health nuts that insist on a diet consisting of little more than raw vegetables, make a fuss about so-called GMOs, campaign for additives (none of which are anywhere close to being group 1 carcinogens) to be removed from food, and then post pictures of themselves drinking wine. You really want to improve your health? Never mind caramel colour IV in your latte, give up the booze.

So, alcohol isn’t a health food, or indeed drink. But to get back to the original question, does it cause dehydration? Well, it would appear that while it does do a lot of bad stuff health-wise, that’s not one of the bad things it does. In a study, men drank six pints of beer and were then subjected to a number of tests. As the subsequent PubMed article states: “All subjects had a slight hangover, but none was fluid depleted”.

Screen Shot 2015-08-29 at 18.22.08

Twin doctors Chris and Xand van Tulleken in a recent BBC documentary.

In a recent BBC Horizon documentary, twin doctors Chris and Xand van Tulleken collected all their urine during a night in which Xand drank 21 units of alcohol in one sitting (while his brother only had one drink), and next morning demonstrated that the volumes were the same. In other words, the excessive alcohol consumption had not, as is widely believed, had a significant diuretic effect.

Admittedly, this was only two people, and the PubMed study only involved six participants – small sample size is often an issue with such work. The Dutch study I mentioned at the start was much larger, which is one reason it’s useful. In that study, drinking water appeared to make little difference to the severity of the hangover experienced. The only thing that really mattered was, not surprisingly, how much alcohol had been consumed.

In fact it’s not well-understood what does cause hangovers. It would appear it’s linked to an immune system response. In very simple terms, getting blind drunk is a little like self-imposed flu. Drinking plenty of fluids won’t do you any harm, but it’s not actually a solution. Of course, there’s no virus involved here to keep the immune system on the warpath, so for most healthy people the best, and probably only, hangover cure is time.

So in summary, yes, we probably can chuck “alcohol causes dehydration” in with all the other alcohol myths floating around out there, but that’s not an excuse to have a pint after your workout.

Follow The Chronicle Flask on Facebook for regular updates.