Rock bottom: can rocks in your dog’s water bowl protect your lawn?

fractal image, featuring the hashtag #272sci

Take a look at the Twitter hashtag #272sci

One quick thing before I dive into this month’s post: if you’re a Twitter user, check out my series of very tiny science tweets under the hashtag #272sci. The aim is to explain a science thing in one tweet – without using a thread – and it’s 272 because that’s the number of characters I have to use after including the hashtag and a space. So far I’ve covered leaf colours, frothy milk, caffeine and poisonous millipedes. There will be more to come!

Now, speaking of Twitter, a couple of weeks ago Prof Mark Lorch tweeted about Dog Rocks. Dog… what? I hear you ask (really quite understandably).

Well, it turns out that Dog Rocks are a product that you can buy, and that you put into your dog’s water bowl. Your dog then drinks the water that has been sloshing over the rocks, and, this is where we start to run into trouble, this is meant to have an effect on your dog’s urine. This, in turn, is supposed to protect any grass your dog might then pee on.

photo of a patch of dead grass

Dog urine damages grass

All right, so let’s start somewhere in the vague vicinity of some science: if you have a dog, or even if you’ve just spent some time with someone who has a dog, you’ve probably noticed that dog urine isn’t very kind to grass. Commonly, you see something like the photo here, that is, patches of yellow, dead grass, surrounded by quite luscious green growth.

Why is this? It’s because dog urine – like the urine of all mammals – contains urea, CO(NH2)2. Urea forms in the body when animals metabolise nitrogen-containing compounds, in particular, proteins. It’s essentially a way for the body to get rid of excess nitrogen.

People sometimes confuse urea with ammonia, for reasons that I’ll come to in a moment. But they’re not the same thing. Urea is odourless, forms a pH neutral solution and, if you extract it from the liquid in which it is dissolved, produces solid crystals at room temperature.

Pure ammonia, NH3, by contrast, is a gas at room temperature (boiling point -33.3 ℃), forms alkaline solutions (with pH values greater than 7) and has that pungent ‘ngggh get it away from me!’ smell with which we’re probably all familiar.

Sample pots full of pale yellow liquid

Fresh urine contains urea, but little ammonia

Although these two substances aren’t the same, they are linked: many living things convert ammonia (which is very toxic) to urea (which is much less so) as part of normal metabolism. And it also goes the other way, in a process called urea hydrolysis. This reaction happens in urine once it’s out of the body, too, which is the main reason why, after a little while, urine starts to smell really, really bad.

Okay, fine, but what has this got to do with grass, exactly? Well urea (and ammonia, for that matter) are excellent sources of nitrogen. Plants need nitrogen to grow, but dog urine contains too much, and too much nitrogen is bad – in the same way that too much of pretty much anything nice is bad for humans. It damages the blades of grass and a yellowish dead spot appears, often ringed by some particularly lush grass that, being slightly outside the immediate target zone, caught a whiff of extra nitrogen without being overwhelmed.

Back to Dog Rocks. Interestingly, the website includes an explanation not unlike the one I’ve just given on their fact sheet. What it doesn’t do is satisfactorily explain how Dog Rocks are supposed to change the nitrogen content of your dog’s urine.

photo of a dog drinking water

Dog Rocks are meant to be placed in your dog’s water bowl

The website says that Dog Rocks are “a coherent rock with a mechanically stable framework”. Okay… so… Dog Rocks won’t dissolve or break up in your dog’s water bowl. A good start. It goes on to say, “the rocks provide a stable matrix and a micro-porous medium in which active components are able to act as a water purifying agent through ion exchange” and “Dog Rocks will help purify the water by removing some nitrates, ammonia and harmful trace elements thereby giving your dog a cleaner source of water and lowering the amount of nitrates found in their diet.”

You’ll note they’re using the word nitrate. Nitrates are specifically compounds containing the NO3 ion, but I think they’re using the term in a more general way, to suggest any nitrogen-containing compound (including urea and ammonia). And by the way, nitrates are different from the similar-sounding nitrites, which contain the NO2 ion. Fresh urine from a healthy dog (or human, for that matter) shouldn’t contain nitrite. In fact, a dipstick test for nitrite in urine is commonly used to check for urinary tract infections, because it suggests bacteria are present.

Anyway, nitrates/nitrites aside, it’s the last bit of that claim which really makes no sense. Your dog is not ingesting anything like a significant quantity of nitrogen-containing compounds from its water bowl. Urea comes from the metabolic breakdown of proteins, and they come from your dog’s food.

Photo of puppies eating food that I totally picked because it's cute ;-)

The nitrogen-containing compounds in your dogs’ urine come from their food, not their water

It’s faintly possible, I suppose, that Dog Rocks might somehow filter out some urea/nitrates from urine. But then your dog would have to pee through the Dog Rocks and, honestly, if you can manage to arrange that, you might as well train your dog not to pee on your grass in the first place.

I suggest that there are three possible explanations for the positive testimonials for this product. 1) Owners who use it are inadvertently encouraging their dogs to drink more water, which could be diluting their urine, leading to less grass damage. 2) It’s all a sort of placebo effect: owners imagine it’s going to work, and they see what they’re expecting to see, or 3) they’re all made up.

You decide, but there is absolutely no scientifically-plausible way that putting any kind of rocks in your dog’s water bowl will do anything to stop dog pee damaging your grass. This is £15 you do not need to spend. But hey, you could avoid the money burning a hole in your pocket (see what I did there?) by buying me a coffee… 😉


Check out the Twitter hashtag #272sci here, and support the Great Explanations book project here!

Do you want something non-sciency to distract you from, well, everything? Why not take a look at my fiction blog: the fiction phial? You can also find me doing various flavours of editor-type-stuff at the horror podcast, PseudoPod.org – so head over there, too!

Like the Chronicle Flask’s Facebook page for regular updates, or follow @chronicleflask on Twitter. Content is © Kat Day 2021. You may share or link to anything here, but you must reference this site if you do. You can support my writing my buying a super-handy Pocket Chemist from Genius Lab Gear using the code FLASK15 at checkout (you’ll get a discount, too!) or by buying me a coffee – just hit this button:
Buy Me a Coffee at ko-fi.com

 

Cleaning chemistry – the awesome power of soap

Well, times are interesting at the moment, aren’t they? I’m not going to talk (much) about The Virus (there’s gonna be a movie, mark my words), because everyone else is, and I’m not an epidemiologist, virologist or an immunologist or, in fact, in any way remotely qualified. I am personally of the opinion that it’s not even especially helpful to talk about possibly-relevant drugs at the moment, given that we don’t know enough about possible negative interactions, and we don’t have reliable data about the older medicines being touted.

In short, I think it’s best I shut up and leave the medical side to the experts. But! I DO know about something relevant. What’s that, I hear you ask? Well, it’s… soap! But wait, before you start yawning, soap is amazing. It is fascinating. It both literally and figuratively links loads of bits of cool chemistry with loads of other bits of cool chemistry. Stay with me, and I’ll explain.

First up, some history (also not a historian, but that crowd is cool, they’ll forgive me) soap is old. Really, really, old. Archaeological evidence suggests ancient Babylonians were making soap around 4800 years ago – probably not for personal hygiene, but rather, mainly, to clean cooking pots. It was originally made from fats boiled with ashes, and the theory generally goes that the discovery was a happy accident: ashes left from cooking fires made it much easier to clean pots and, some experimenting later, we arrived at something we might cautiously recognise today as soap.

Soap was first used to clean pots.

The reason this works is that ashes are alkaline. In fact, the very word “alkali” is derived from the Arabic al qalīy, meaning calcined ashes. This is because plants, and especially wood, aren’t just made up of carbon and hydrogen. Potassium and calcium play important roles in tree and plant metabolism, and as a result both are found in moderately significant quantities in wood. When that wood is burnt at high temperatures, alkaline compounds of potassium and calcium form. If the temperature gets high enough, calcium oxide (lime) forms, which is even more alkaline.

You may, in fact, have heard the term potash. This usually refers to salts that contain potassium in a water-soluble form. Potash was first made by taking plant ashes and soaking them in water in a pot, hence, “pot ash”. And, guess where we get the word potassium from? Yep. The pure element, being very reactive, wasn’t discovered until 1870, thousands of years after people first discovered how useful its compounds could be. And, AND, why does the element potassium have the symbol K? It comes from kali, the root of the word alkali.

See what I mean about connections?

butyl ethanoate butyl ethanoate

Why is the fact that the ashes are alkaline relevant? Well, to answer that we need to think about fats. Chemically, fats are esters. Esters are chains of hydrogen and carbon that have, somewhere within them, a cheeky pair of oxygen atoms. Like this (oxygen atoms are shown red):

Now, this is a picture of butyl ethanoate (aka butyl acetate – smells of apples, by the way) and is a short-ish example of an ester. Fats generally contain much longer chains, and there are three of those chains, and the oxygen bit is stuck to a glycerol backbone.

Thus, the thick, oily, greasy stuff that you think of as fat is a triglyceride: an ester made up of three fatty acid molecules and glycerol (aka glycerine, yup, same stuff in baking). But it’s the ester bit we want to focus on for now, because esters react with alkalis (and acids, for that matter) in a process called hydrolysis.

Fats are esters. Three fatty acid chains are attached to a glycerol “backbone”.

The clue here is in the name – “hydro” suggesting water – because what happens is that the ester splits where those (red) oxygens are. On one side of that split, the COO group of atoms gains a metal ion (or a hydrogen, if the reaction was carried out under acidic conditions), while the other chunk of the molecule ends up with an OH on the end. We now have a carboxylate salt (or a carboxylic acid) and an alcohol. Effectively, we’ve split the molecule into two pieces and tidied up the ends with atoms from water.

Still with me? This is where it gets clever. Having mixed our fat with alkali and split our fat molecules up, we have two things: fatty acid salts (hydrocarbon chains with, e.g. COONa+ on the end) and glycerol. Glycerol is extremely useful stuff (and, funnily enough, antiviral) but we’ll put that aside for the moment, because it’s the other part that’s really interesting.

What we’ve done here is produce a molecule that has a polar end (the charged bit, e.g. COONa+) and a non-polar end (the long chain of Cs and Hs). Here’s the thing: polar substances tend to only mix with other polar substances, while non-polar substances only mix with other non-polar substances.

You may be thinking this is getting technical, but honestly, it’s not. I guarantee you’ve experienced this: think, for example, what happens if you make a salad dressing with oil and vinegar (which is mostly water). The non-polar oil floats on top of the polar water and the two won’t stay mixed. Even if you give them a really good shake, they separate out after a few minutes.

The dark blue oily layer in this makeup remover doesn’t mix with the watery colourless layer.

There are even toiletries based around this principle. This is an eye and lip makeup remover designed to remove water-resistant mascara and long-stay lipstick. It has an oily layer and a water-based layer. To use it, you give the container a good shake and use it immediately. The oil in the mixture removes any oil-based makeup, while the water part removes anything water-based. If you leave the bottle for a minute or two, it settles back into two layers.

But when we broke up our fat molecules, we formed a molecule which can combine with both types of substance. One end will mix with oily substances, and the other end mixes with water. Imagine it as a sort of bridge, joining two things that otherwise would never be connected (see, literal connections!)

There are a few different names for this type of molecule. When we’re talking about food, we usually use “emulsifier” – a term you’ll have seen on food ingredients lists. The best-known example is probably lecithin, which is found in egg yolks. Lecithin is the reason mayonnaise is the way it is – it allows oil and water to combine to give a nice, creamy product that stays mixed, even if it’s left on a shelf for months.

When we’re talking about soaps and detergents, we call these joiny-up molecules “surfactants“. You’re less likely to have seen that exact term on cosmetic ingredients lists, but you will (if you’ve looked) almost certainly have seen one of the most common examples, which is sodium laureth sulfate (or sodium lauryl sulfate), because it turns up everywhere: in liquid soap, bubble bath, shampoo and even toothpaste.

I won’t get into the chemical makeup of sodium laureth sulfate, as it’s a bit different. I’m going to stick to good old soap bars. A common surfactant molecule that you’ll find in those is sodium stearate, which is just like the examples I was talking about earlier: a long hydrocarbon chain with COONa+ stuck on the end. The hydrocarbon end, or “tail”, is hydrophobic (“water-hating”), and only mixes with oily substances. The COONa+ end, or “head”, is hydrophilic (“water loving”) and only mixes with watery substances.

Bars of soap contain sodium stearate.

This is perfect because dirt is usually oily, or is trapped in oil. Soap allows that oil to mix with the water you’re using to wash, so that both the oil, and anything else it might be harbouring, can be washed away.

Which brings us back to the wretched virus. Sars-CoV-2 has a lipid bilayer, that is, a membrane made of two layers of lipid (fatty) molecules. Virus particles stick to our skin and, because of that membrane, water alone does a really bad job of removing them. However, the water-hating tail ends of surfacant molecules are attracted to the virus’s outer fatty surface, while the water-loving head ends are attracted to the water that’s, say, falling out of your tap. Basically, soap causes the virus’s membrane to dissolve, and it falls apart and is destroyed. Victory is ours – hurrah!

Hand sanitisers also destroy viruses. Check out this excellent Compound Interest graphic (click the image for more).

Who knew a nearly-5000 year-old weapon would be effective against such a modern scourge? (Well, yes, virologists, obviously.) The more modern alcohol hand gels do much the same thing, but not quite as effectively – if you have access to soap and water, use them!

Of course, all this only works if you wash your hands thoroughly. I highly recommend watching this video, which uses black ink to demonstrate what needs to happen with the soap. I thought I was washing my hands properly until I watched it, and now I’m actually washing my hands properly.

You may be thinking at this point (if you’ve made it this far), “hang on, if the ancient Babylonians were making soap nearly 5000 years ago, it must be quite easy to make… ooh, could I make soap?!” And yes, yes it is and yes you can. Believe me, if the apocolypse comes I shall be doing just that. People rarely think about soap in disaster movies, which is a problem, because without a bit of basic hygine it won’t be long before the hero is either puking his guts up or dying from a minor wound infection.

Here’s the thing though, it’s potentially dangerous to make soap, because most of the recipes you’ll find (I won’t link to any, but a quick YouTube search will turn up several – try looking for “saponification“) involve lye. Lye is actually a broad term that covers a couple of different chemicals, but most of the time when people say lye these days, they mean pure sodium hydroxide.

Pure sodium hydroxide is usually supplied as pellets.

Pure sodium hydroxide comes in the form of pellets. It’s dangerous for two reasons. Firstly, precisely because it’s so good at breaking down fats and proteins, i.e. the stuff that humans are made of, it’s really, really corrosive and will give you an extremely nasty burn. Remember that scene in the movie Fight Club? Yes, that scene? Well, that. (Follow that link with extreme caution.)

And secondly, when sodium hydroxide pellets are mixed with water, the solution gets really, really hot.

It doesn’t take a lot of imagination to realise that a really hot, highly corrosive, solution is potentially a huge disaster waiting to happen. So, and I cannot stress this enough, DO NOT attempt to make your own soap unless you have done a lot of research AND you have ALL the appropriate safety equipment, especially good eye protection.

And there we are. Soap is ancient and awesome, and full of interesting chemistry. Make sure you appreciate it every time you wash your hands, which ought to be frequently!

Stay safe, everyone. Take care, and look after yourselves.


Want something non-sciency to distract you? Why not check out my fiction blog: the fiction phial. There are loads of short stories, and even (recently) a poem. Enjoy!

If you’re studying from home, have you got your Pocket Chemist yet? Why not grab one? It’s a hugely useful tool, and by buying one you’ll be supporting this site – it’s win-win!

Like the Chronicle Flask’s Facebook page for regular updates, or follow @chronicleflask on Twitter. Content is © Kat Day 2020. You may share or link to anything here, but you must reference this site if you do. If you enjoy reading my blog, please consider buying me a coffee through Ko-fi using the button below.
Buy Me a Coffee at ko-fi.com

 

 

Are you (still) a chemist and you didn’t know it?

I recently wrote a post listing five bits of chemistry you (probably) do every day.  It was surprisingly popular and so, just like the big movie companies, here’s the sequel!

Picture 0151.  Make fresh coffee (or at least drink one someone else made)
Espresso (the basis of most coffee drinks) is made by forcing a small amount of very-nearly boiling water through ground coffee beans.  This handily extracts a number of chemicals including all the ones that produce the lovely coffee flavours and aromas but also, crucially, our friend caffeine, without which many of us simply wouldn’t function on a daily basis.  What you (or your favourite barista) have done here is a form of chemical extraction.  Extraction techniques are extremely important in chemistry, because nature has an annoying habit of stirring up the stuff we want with lots of other things.  Chemists, especially the organic ones (produced with all-natural fertilisers) spend most of their lives carefully and painstakingly extracting things from other things. Some of them probably earn less than baristas, too.

2.  Make toast
You know when you make the perfect slice, and it goes that lovely brown colour, just before black?  That’s the Maillard reaction in action.  It’s the same thing that happens when you brown meat, chips, onions or, well, anything else that goes brown when you cook it.  It’s a reaction between amino acids (the stuff proteins are made of) and sugars.  It’s also responsible for those lovely toasted-biscuity smells and favours.  The surface of the food has to be in contact with dry heat for this reaction to happen, which is why boiled and microwaved food doesn’t brown.  And alkaline conditions help it along, which is the main reason lye is traditionally used on the surface of pretzels and other German breads (that’s always made me a bit nervous).

Haemoglobin3.  Breathe
I mentioned respiration in my previous post but as any 13 year-old pupil will tell you, and most adults have long since forgotten, respiration is not the same as breathing.  Here I’m actually thinking of oxygen exchange (which is also not, technically, the breathing bit but bear with me).  You’re probably aware that you blood has iron in it: in fact that iron is tied up in rather beautifully complicated haemoglobin molecules.  Oxygen molecules bond to four iron atoms in the haemoglobin with something called coordinate, or dative covalent, bonds.  If it weren’t for this nifty bit of chemical bonding, there’s no way our blood could carry enough oxygen around our bodies, delivering it safely to our cells, to keep us going from one minute to the next.

251840969_6404.  Neutralised some excess acid
Taken an indigestion tablet recently?  Did you realise you were doing a chemistry experiment in your very own stomach?  Well you were!  Indigestion tablets contain a variety of substances, but some of the most common ingredients are magnesium hydroxide (also known, when suspended in water, as ‘milk of magnesia’), calcium carbonate, sodium bicarbonate and magnesium carbonate.  These are all bases: they react with acids to form a salt and water and, in the case of the carbonates, carbon dioxide as well.  The acid in your stomach is hydrochloric acid, so for example:

sodium bicarbonate + hydrochloric acid –> sodium chloride + water + carbon dioxide

Now, is that Rennie advert that claims to “turn acid into water and other natural substances” starting to make sense?  They don’t want to use the word salt for some reason…

5.  Used drain cleaner
This is one of my favouritist little bits of chemistry.  Really.  It’s lovely.  Well apart from the horribly caustic chemicals involved obviously.  Drain cleaner is dangerous concoction nasty stuff but it’s main ingredient is often a strong alkali, like sodium hydroxide (there are also acidic drain cleaners; it’s quite important that you don’t mix them).  The stuff that blocks up your plughole is, largely, protein (hair, skin cells, yuck) and and oily dirt.  The strong alkali reacts with these things in a reaction called hydrolysis.  Now this is clever, because soap is made by (virtually) the exact same reaction.  Soap is produced by saponification, where fats are mixed with a strong alkali.  So what are you doing when you put drain cleaner in your stuffed-up plug hole?  You’re not only breaking down the gunk, you’re also effectively making soap in situ, which helps to wash away the remaining dirt.  How brilliant is that?

With thanks to Andrew (@_byronmiller) for his suggestions.