Puking pumpkins: more hydrogen peroxide

It was Halloween yesterday and, unusually for the UK, it fell in school term time. As it turned out, I was teaching chemistry to a group of 12-13 year olds on that day which was too good an opportunity to miss.

Time for the puking pumpkin!

A side note: there’s loads of great chemistry here, and the pumpkin isn’t essential – you could easily do this same experiment during a less pumpkin-prolific month with something else. Puking watermelon, anyone?

Carve a large mouth, draw the eyes and nose with marker pen.

First things first, prepare your pumpkin! Choose a large one – you need room to put a conical flask inside and put the pumpkin’s “lid” securely back in place.

Carve the mouth in the any shape you like, but make it generous. Draw the eyes and nose (and any other decoration) in waterproof marker – unless you want your pumpkin to “puke” out of its nose and eyes as well!

Rest the pumpkin on something wipe-clean (it might leak from the bottom) and put a deep tray in front of it.

To make the “puke” you will need:

  • 35% hydrogen peroxide (corrosive)
  • a stock solution of KI, potassium iodide (low hazard)
  • washing up liquid

The puking pumpkin!

You can also add food colouring or dye, but be aware that the reaction can completely change or even destroy the colours you started with. If colour matters to you, test it first.

Method:

  1. Place about 50 ml (use more if it’s not so fresh) of the hydrogen peroxide into the conical flask, add a few drops of washing up liquid (and dye, if you’re using it).
  2. Add some KI solution and quickly put the pumpkin’s lid back in place.
  3. Enjoy the show!

Check out some video of all this here.

What’s happening? Hydrogen peroxide readily decomposes into oxygen and water, but at room temperature this reaction is slow. KI catalyses the reaction, i.e. speeds it up. (There are other catalysts you could also try if you want to experiment; potassium permanganate for example.) The washing up liquid traps the oxygen gas in foam to produce the “puke”.

The word and symbol equations are:

hydrogen peroxide –> water + oxygen
2H2O2 –> 2H2O + O2

There are several teaching points here:

  • Evidence for chemical change.
  • Compounds vs. elements.
  • Breaking the chemical bonds in a compound to form an element and another compound.
  • Balanced equations / conservation of mass.
  • The idea that when it comes to chemical processes, it’s not just whether a reaction happens that matters, but also how fast it happens…
  • … which of course leads to catalysis. A-level students can look at the relevant equations (see below).

Once the pumpkin has finished puking, demonstrate the test for oxygen gas.

Some health and safety points: the hydrogen peroxide is corrosive so avoid skin contact. Safety goggles are essential, gloves are a Good Idea(™). The reaction is exothermic and steam is produced. A heavy pumpkin lid will almost certainly stay in place but still, stand well back. 

But we’re not done, oh no! What you have at the end of this reaction is essentially a pumpkin full of oxygen gas. Time to crack out the splints and demonstrate/remind your students of the test for oxygen. It’s endlessly fun to put a glowing splint into the pumpkin’s mouth and watch it catch fire, and you’ll be able to do it several times.

And we’re still not done! Once the pumpkin has completely finished “puking”, open it up (carefully) and look inside. Check out that colour! Why is it bluish-black in there?

The inside of the pumpkin is blue-black: iodine is produced which complexes with starch.

It turns out that you also get some iodine produced, and there’s starch in pumpkins. It’s the classic, blue-black starch complex.

Finally, give the outside of the pumpkin a good wipe, take it home, carve out the eyes and nose and pop it outside for the trick or treaters – it’s completely safe to use.

Brace yourselves, more equations coming…

The KI catalyses the reaction because the iodide ions provide an alternative, lower-energy pathway for the decomposition reaction. The iodide reacts with the hydrogen peroxide to form hypoiodite ions (OI). These react with more hydrogen peroxide to form water, oxygen and more iodide ions – so the iodide is regenerated, and hence is acting as a catalyst.

H2O2 + I –> H2O + OI
H2O2 + OI –> H2O + O2 + I

The iodine I mentioned comes about because some of the iodide is oxidised to iodine by the oxygen. At this point we have both iodine and iodide ions – these combine to form triiodide, and this forms the familiar blue-black complex.

Phew. That’s enough tricky chemistry for one year. Enjoy your chocolate!

Trick or treat!

 


 

 


Like the Chronicle Flask’s Facebook page for regular updates, or follow @chronicleflask on Twitter. All content is © Kat Day 2017. You may share or link to anything here, but you must reference this site if you do.


All comments are moderated. Abusive comments will be deleted, as will any comments referring to posts on this site which have had comments disabled.

Advertisements

Hydrogen peroxide: another deadly alternative?

I’m sure most people have heard of hydrogen peroxide. It’s used as a disinfectant and, even if you’ve never used it for that, you probably at least know that it’s used to bleach hair. It’s where the phrase “peroxide blonde” comes from, after all. Hydrogen peroxide, and its formula, is so famous that there’s an old chemistry joke about it:

(I have no idea who to credit for the original drawing – if it’s you, leave me a message.)

To save you squinting at the text, it goes like this:
Two men walk into a bar. The first man says, “I’ll have some H2O.”
The second man says, “I’ll have some H2O, too.”
The barman brings the drinks. The second man dies horribly.

Now I think about it, it’s not a terribly funny joke.

Hydrogen peroxide has an extra oxygen atom in the middle.

Never mind. You get the idea. H2O2 (“H2O, too”) is the formula for hydrogen peroxide. Very similar to water’s formula, except with an extra oxygen atom in the middle. In fact, naturopaths – purveyors of alternative therapies – often refer to hydrogen peroxide as “water with extra oxygen”. But this is really misleading because, to torture a metaphor, that extra oxygen makes hydrogen peroxide the piranha to water’s goldfish.

Water, as we know, is pretty innocuous. You should try not to inhale it obviously, or drink more than about six litres in one go, but otherwise, its pretty harmless. Hydrogen peroxide, on the other hand, not so much. The molecule breaks apart easily, releasing oxygen. That makes it a strong oxidising agent. It works as a disinfectant because it basically blasts cells to pieces. It bleaches hair because it breaks down pigments in the hair shaft. And, as medical students will tell you, it’s also really good at cleaning up blood stains – because it oxidises the iron in haemoglobin to Fe3+, which is a pale yellow colour*.

Dilute hydrogen peroxide is readily available.

In its dilute form, hydrogen peroxide is a mild antiseptic. Three percent and even slightly more concentrated solutions are still readily available in high-street pharmacies. However, even these very dilute solutions can cause skin and eye irritation, and prolonged skin contact is not recommended. The trouble is, while it does destroy microbes, it also destroys healthy cells. There’s been a move away from using hydrogen peroxide for this reason, although it is still a popular “home” remedy.

More concentrated** solutions are potentially very dangerous, causing severe skin burns. Hydrogen peroxide is also well-known for its tendency to react violently with other chemicals, meaning that it must be stored, and handled, very carefully.

All of which makes the idea of injecting into someone’s veins particularly horrific.

But this is exactly what some naturopaths are recommending, and even doing. The idea seems to have arisen because hydrogen peroxide is known to damage cancer cells. But so will a lot of other dangerous substances – it doesn’t mean it’s a good idea to inject them. Hydrogen peroxide is produced by certain immune cells in the body, but only in a very controlled and contained way. This is definitely a case where more isn’t necessarily better.

The use of intravenous hydrogen peroxide appears to have begun in America, but it may be spreading to the UK. The website yestolife.org.uk, which claims to empower people with cancer to “make informed decisions”, states “The most common form of hydrogen peroxide therapy used by doctors calls for small amounts of 30% reagent grade hydrogen peroxide added to purified water and administered as an intravenous drip.”

30% hydrogen peroxide is really hazardous stuff. It’s terrifying that this is being recommended to vulnerable patients.

Other sites recommend inhaling or swallowing hydrogen peroxide solutions, both of which are also potentially extremely dangerous.

If anyone ever suggests a hydrogen peroxide IV, run very fast in the other direction.

In 2004 a woman called Katherine Bibeau died after receiving intravenous hydrogen peroxide treatment from James Shortt, a man from South Carolina who called himself a “longevity physician”. According to the autopsy report she died from systemic shock and DIC – the formation of blood clots in blood vessels throughout the body. When her body arrived at the morgue, she was covered in purple-black bruises.

Do I need to state the obvious? If anyone suggests injecting this stuff, run. Run very fast, in the other direction. Likewise if they suggest drinking it. It’s a really stupid idea, one that could quite literally kill you.


* As anyone who’s ever studied chemistry anywhere in my vicinity will tell you, “iron three is yellow, like wee.”


** The concentration of hydrogen peroxide is usually described in one of two ways: percentage and “vol”. Percentage works as you might expect, but vol is a little different. It came about for practical, historical reasons. As Prof. Poliakoff comments in this video, hydrogen peroxide is prone to going “flat” – leave it in the bottle for long enough and it gradually decomposes until what you actually have is a bottle of ordinary water. Particularly in the days before refrigeration (keeping it cold slows down the decomposition) a bottle might be labelled 20%, but actually contain considerably less hydrogen peroxide.

What to do? The answer was quite simple: take, say, 1 ml of hydrogen peroxide, add something which causes it to decompose really, really fast (lots of things will do this: potassium permanganate, potassium iodide, yeast, even liver) and measure the volume of oxygen given off. If your 1 ml of hydrogen peroxide produces 10 ml of oxygen, it’s 10 vol. If it produces 20, it’s 20 vol. And so on. Simple. 3% hydrogen peroxide, for the record, is about 10 vol***. Do not mix up these numbers.


*** Naturally, there are mole calculations to go with this. Of course there are. For A-level Chemists, here’s the maths (everyone else can tune out; I’m adding this little footnote because I found this information strangely hard to find):

Hydrogen peroxide decomposes as shown in this equation:
2H2O2 –> 2H2O + O2

Let’s imagine we decompose 1 ml of hydrogen peroxide and obtain 10 mls of oxygen.

Assuming the oxygen gas occupies 24 dm3 (litres), or 24000 mls, at standard temperature and pressure, 10 mls of oxygen is 10 / 24000 = 0.0004167 moles. But, according to the equation, we need two molecules of hydrogen peroxide to make one molecule of oxygen, so we need to multiply this number by two, giving us 0.0008333 moles.

To get the concentration of the hydrogen peroxide in the more familar (to chemists, anyway) mol dm-3, just divide that number of moles by the volume of hydrogen peroxide. In other words:

0.0008333 mols / 0.001 dm3 = 0.833 mol dm-3

If you really want to convert this into a percentage by mass (you can see why people stick with “vol” now, right?), then:

0.833 mol (in the litre of water) x 34 g mol-1 (the molecular mass of H2O2)
= 28.32 g (in 1000 g of water)

Finally, (28.32 / 1000) x 100 = 2.8% or, rounding up, 3%

In summary (phew):
10 vol hydrogen peroxide = 0.83 mol dm-3 = 3%


Like the Chronicle Flask’s Facebook page for regular updates, or follow @chronicleflask on Twitter. All content is © Kat Day 2017. You may share or link to anything here, but you must reference this site if you do.


All comments are moderated. Abusive comments will be deleted, as will any comments referring to posts on this site which have had comments disabled.

Glow sticks or sparklers: which is riskier?

by Unknown artist,print,(circa 1605)

Remember, remember the 5th of November… (Image by Unknown artist, circa 1605)

It’s fireworks night in the UK – the day when we celebrate a small group of terrorists nearly managing to blow up the Houses of Parliament in 1605 by, er, setting fire to stuff. No, it makes perfect sense, honestly, because…. look, it’s fun, all right?

Anyway, logical or not, Brits light fireworks on this day to mark the occasion. Fireworks, of course, are dangerous things, and there’s been more than one petition to ban their sale to members of the general public because of safety concerns. It hasn’t happened yet, but public firework displays, rather than private ones at home, are more and more popular.

Which brings me to this snippet from a letter a friend of mine recently received.

screen-shot-2016-11-04-at-21-51-33

In case you can’t read it, it says:

“NO SPARKLERS PLEASE – with so many children runni[ng] around, we believe it is too dangerous fro children to be [words missing] lighted sparklers around.
Last year we had a few incidents of children drinking the [words missing] glowsticks – please advise against this.”

Now there are some words missing here, but it’s fairly clear that sparklers are prohibited at this event, and it seems to be suggesting that children have managed to get into, and swallow, the contents of glowsticks. But they, by contrast, haven’t been banned. Indeed, parents are merely being asked to “advise” against it.

Hmmm.

Does this seem like an appropriate response? Well, let’s see…

1024px-sparklers_moving_slow_shutter_speedWhat are these things? Let’s begin with sparklers. They’re hand-held fireworks, usually made of a stiff metal wire, about 20 cm long, the end of which is dipped in a thick mixture of metallic particles, fuel and an oxidising agent. The metal particles are most commonly magnesium and/or iron. The fuel usually involves charcoal, and the oxidiser is likely to be potassium nitrate. Sometimes metal salts are also added to produce pretty colours.

Sparklers are designed to burn hot and fast. The chemical-dipped end can reach temperatures between 1000-1600 oC, but the bit you hold doesn’t have time to heat up before the firework goes out (although gloves are still recommended). The sparks, likewise, are extremely hot but burn out in seconds. This makes sparklers relatively safe, if they’re held well way from the face and body, and if the hot end isn’t touched.

If. Every year there are injuries. Sparkler injuries aren’t recorded separately from other firework injuries in the UK, but the data we do have suggest we might be looking at a few thousand A&E admissions each year, and probably a lot more minor injuries which are treated at home.

Sparklers are most dangerous once they've gone out.

Sparklers are most dangerous after they’ve gone out.

The biggest danger comes from people, usually children, picking up ‘spent’ sparklers. The burny end takes a long time to cool down, but once the sparkles are finished and it’s stopped glowing it’s impossible to judge how hot it is just by looking.

The burns caused by picking up hot sparklers are undoubtedly very, very nasty, but they’re also relatively easy to avoid. Supply buckets of cold water, and drill everyone to put their spent sparklers into the buckets as soon as they go out. Hazard minimised. Well, assuming everyone follows instructions of course, which isn’t always a given. Other risks are people getting poked with hot sparkers – which can be avoided by insisting sparkler-users stand in a line, facing the same way, with plenty of space in front of them – and people lighting several sparklers at once and getting a flare. Again, fairly easily avoided in a public setting, where you can threaten and nag everyone about safety and keep an eye on what they’re doing.

Although I do understand the instinct to simply ban the potentially-dangerous thing, and thus remove the risk, the idea does worry me a little bit. I was born in the 70s and I grew up with fire. I remember the coal truck delivering coal to us and our neighbours. I was taught how to light a match at an early age, and cautioned not to play with them (and then I did, obviously, because in those days it was usual for kids to spend hours and hours entirely unsupervised – but fortunately I emerged unscathed). Pretty much everyone kept a supply of candles in a drawer, in case the lights went out. And bonfires were a semi-regular event – this being long before garden waste collections.

These days things are very different. It’s not unusual to meet a child who, by age 11, has never lit a match. If their home oven and hob are electric, they may never have seen a flame outside of yearly birthday cake candles. But so what? You may be thinking. Aren’t fewer burns and house fires a good thing?

Of course they are, but people who’ve never dealt with fire tend to panic when faced with it. If the only flame you’ve ever met is a birthday cake candle, your instinct might well be to blow when faced with something bigger. This can be disastrous – it can make the fire worse, and it can spread hot embers to other nearby flammable items.

I’m personally of the opinion that children ought to be taught to handle fire safely, how to safely extinguish a small fire, when to call in the experts, and not to disintegrate into hysterics the presence of anything warmer than a cup of tea. Sparklers, I think, can be part of that. Particularly if they’re used in a well-supervised setting, with plenty of safety measures and guidance on-hand. (As opposed to, say, picking them up for the first time at university with some drunk mates, setting fire to half a dozen at once and immediately dropping them.)

Now. Onto glowsticks. They’re pretty neat, aren’t they? We’ve already established that I’m quite old, and I remember these appearing in shops for the first time, sometime in the very early 90s, and being utterly mesmerised by that eerie, cold light.

phenyl_oxalate_ester

Diphenyl oxalate (trademark name Cyalume)

They work thanks to two chemicals. Usually, these are hydrogen peroxide (H2O2 – also used to bleach hair, as a general disinfectant, and as the subject of a well-known punny joke involving two scientists in a bar) and another solution containing a phenyl oxalate ester and a fluorescent dye.

These two solutions are separated, with the hydrogen peroxide in a thin-walled, sealed glass vial which is floating in the mixture of ester and dye solution. The whole thing is then sealed in a tough, plastic coating. When you bend the glowstick the glass breaks, the chemicals mix, and a series of chemical reactions happen which ultimately produce light.

How Light Sticks work (from HowStuffWorks.com - click image for more)

How Light Sticks work (from HowStuffWorks.com – click image for more)

Which is all very well. Certainly nice and safe, you’d think. Glowsticks don’t get hot. The chemicals are all sealed in a tube. What could go wrong?

I thought that too, once. Until I gave some glowsticks to some teenagers and they, being teenagers, immediately ripped them apart. You see, it’s actually not that difficult to break the outer plastic coating, particularly on those thin glow sticks that are often used to make bracelets and necklaces. Scissors will do it easily, and teeth will also work, with a bit of determination.

How dangerous is that? Well… it’s almost impossible to get into a glowstick without activating it (the glass vial will break), so it’s less the reactants we need to worry about, more the products.

And those are? Firstly, carbon dioxide, which is no big deal. We breathe that in and out all the time. Then there’s some activated fluorescent dye. Now, these vary by colour and by manufacturer, but as a general rule they’re not something anyone should be drinking. Some fluorescent dyes are known to cause adverse reactions such as nausea and vomiting, and if someone turns out to be allergic to the dye the consequences could be serious. This is fairly unlikely, but still.

Another product of the chemical reactions is phenol, which is potentially very nasty stuff, and definitely not something anyone should be getting on their skin if they can avoid it, let alone drinking.

Inside every activated glowstick are fragments of broken glass.

Inside every activated glowstick are fragments of broken glass.

And then, of course, let’s not forget the broken glass. Inside every activated glowstick are fragments of broken glass – it’s how they’re designed to work. If you break the plastic coating, that glass is exposed. If someone drinks the solution inside a glow stick they could, potentially, swallow that glass. Do I need to spell out the fact that this would be a Bad Thing™?

The thing with hazards is that, sometimes, something that’s obviously risky actually ends up being pretty safe. Because people take care over it. They put safety precautions in place. They write risk assessments. They think.

Whereas something that everyone assumes is safe can actually be more dangerous, precisely because no one thinks about it. How many people know that glowsticks contain broken glass, for instance? Probably not the writer of that letter back there, else they might have used stronger language than “please advise against this.”

So glowsticks or sparklers? Personally, I’d have both. Light on a dark night, after all, is endlessly fascinating. But I’d make sure the sparkler users had buckets of water, cordons and someone to supervise. And glowstick users also ought to be supervised (at least by their parents), warned in the strongest terms not to attempt to break the plastic, and all efforts should be made to ensure that the pretty glowy things don’t fall into the hands of a child still young enough to immediately stuff everything into his or her mouth.

The most important thing about managing risks is not to eliminate every potentially hazardous thing, but rather to understand and plan for the dangers.


Like the Chronicle Flask’s Facebook page for regular updates, or follow @chronicleflask on Twitter. In need of a groovy new mug? Check out this page.


All comments are moderated. Abusive comments will be deleted, as will any comments referring to posts on this site which have had comments disabled.

 

Puzzling pool problems?

We’re half way thorough the Rio 2016 Olypics, and it will have escaped no one’s notice that there have been a few little problems with one of the pools.

Maria Lenk Aquatic Enter, Tuesday, Aug. 9, 2016. (AP Photo/Matt Dunham)

Maria Lenk Aquatic Enter, Tuesday, Aug. 9, 2016. (AP Photo/Matt Dunham)

First, the water turned a mysterious green colour. Then there were reports of a ‘sulfurous’ smell, with German diver Stephan Feck reported as saying it smelled like a “fart”.

The diving pool seemed to be the worst affected, but the water-polo pool next to it also suffered problems, and competitors complained of stinging eyes.

So what on earth was happening? An early suggestion was that copper salts were contaminating the water. It’s not unheard of for copper compounds to get into water supplies, and it would certainly explain the colour; copper chloride solutions in particular are famously greeny-blue. But what about that sulfurous smell? Copper chloride doesn’t smell of sulfur.

Was the strange pool colour due to algae bloom?

Was the strange pool colour due to an algae bloom, like this one in Lake Erie?

The most likely culprit was some sort of algae bloom – in other words rapid algae growth – with the smell probably coming from dimethyl sulfide, or DMS. There’s a singled-celled phytoplankton called Emiliania huxleyi which is particularly famous for producing this smelly compound. In fact, it actually has more than one very important role in nature: the smell is thought to alert marine life that there’s food nearby, but it also seeps into the atmosphere and helps with cloud formation, helping to control our planet’s temperature. Without these reactions, Earth might not be nearly so habitable.

But how did algae manage to grow in the pool? The pool chemicals should have prevented it, so what had happened? An Olympic official then went on to make the comment that “chemistry is not an exact science,” which of course led to much hilarity all around. Chemistry is, after all, incredibly exact. What chemistry student doesn’t remember all those calculations, with answers to three significant figures? The endless balancing of equations? The careful addition of one solution to another, drop by drop? How much more ‘exact’ would you like it to be?

But I had a bit of sympathy with the official, because I suspect that what they actually meant – if not said – was that swimming pool chemistry is not an exact science. And while that, too, is hardly accurate, it is true that swimming pool chemistry is very complicated and things can easily go wrong, particularly when you’re trying to work on an extremely tight schedule. They could hardly, after all, close down all the pools and spend several days carrying out extensive testing in the middle of the sixteen-day-long Olympic Games.

Rio 2016 Olympics Aquatics Stadium (Image: Myrtha Pools)

Rio 2016 Olympics Aquatics Stadium (Image: Myrtha Pools)

When a pool is first built and filled, things are, theoretically, simple. You know exactly how many cubic litres of water there are, and you know exactly how much of each chemical needs to be added to keep the water free of bacteria and other nasties. Those chemicals are added, possibly (particularly in a pool this size) via some kind of automated system, and the pH is carefully monitored to ensure the water is neither too alkaline (basic) nor too acidic.

There’s a certain amount of proprietary variation of swimming pool chemicals, but it essentially all comes down to chlorine, which has been used to make water safe now for over 120 years.

Originally, water was treated to make it alkaline and then chlorine gas itself was added. This produced compounds which killed bacteria, in particular sodium hypochlorite, but the practice was risky. Chlorine gas is extremely nasty stuff – it has, after all, been used as a chemical weapon – and storing it, not to mention actually using it, was a dangerous business.

However, hundreds of people swimming in untreated water is a recipe for catching all kinds of water-borne disease, so it wasn’t long before alternatives were developed.

The Chemistry of Swimming Pools (Image: Compound Interest - click for more info)

The Chemistry of Swimming Pools (Image: Compound Interest – click graphic for more info)

Those alternatives made use of the chemistry that was happening anyway in the water, but  allowed the dangerous bit, with the elemental chlorine, to happen somewhere else. And so hypochlorite salts began to be manufactured to be used in swimming pools.

As the lovely graphic from Compound Interest illustrates, sodium hypochlorite reacts with water to form hypochlorous acid, which in turn goes on to form hypochlorite ions. These two substances sit in an equilibrium, and both are oxidants, which is good because oxidants are good at blasting bacteria. The equilibria in question are affected by pH though, which is one reason why, quite apart from the potential effects on swimmers, it’s so important to manage the pH of pool water.

There are a couple of different chemicals which can be added to adjust pH. Sodium bicarbonate, for example, can be used to nudge the pH up if needed. On the other hand, sodium bisulfate can be used to lower pH if the water becomes too alkaline.

Open-air pools have particular problems

UV light breaks down the chemicals that are used to keep swimming pool water clean.

This can all be managed extremely precisely in an unused, enclosed pool. But once you open that pool up, things become less simple. Open-air pools have a particular problem with UV light. Chlorine compounds are often sensitive to UV – this is why CFCs are such a problem for the ozone layer – and hypochlorite is no exception. In the presence of UV it breaks down in a process called photolysis to form chloride ions and oxygen. This means that outdoor pools require more frequent treatments, or the addition of extra chemicals to stabilise the ‘free available chlorine’ (FAC) levels.

Sadly, I haven’t managed to make it over to Rio, but from what I’ve seen the Aquatic Centre has a roof which opens up, which means that the pool water is indeed being exposed to UV light.

So perhaps the chemical levels simply dropped too low, which allowed algae to proliferate? Possibly aggravated by environmental conditions? Indeed, initially this seemed to be the explanation. FINA, the international governing body of aquatics, issued a statement on Wednesday afternoon which said:

“FINA can confirm that the reason for the unusual water color observed during the Rio diving competitions is that the water tanks ran out of some of the chemicals used in the water treatment process. As a result, the pH level of the water was outside the usual range, causing the discoloration. The FINA Sport Medicine Committee conducted tests on the water quality and concluded that there was no risk to the health and safety of the athletes, and no reason for the competition to be affected.”

This prompted people to wonder how on earth chemical levels were allowed to run out in an event as significant as the Olympics – did someone forget to click send on the order? – but still, it seemed to explain what had happened.

FINA issued a new statement

FINA issued a new statement on Sunday

Until today (Sunday), when more information surfaced as Olympic officials announced that they were going to drain at least one of the swimming pools and refill it. This is no small feat and will involve considerable cost: after all, we’re talking about millions of gallons of water. But it seems to be necessary. As Rio 2016’s director of venue management Gustavo Nascimento said:

“On the day of the Opening Ceremonies of the Games, 80 litres of hydrogen peroxide was put in the water. This creates a reaction to the chlorine which neutralises the ability of the chlorine to kill organics. This is not a problem for the health of anyone.”

Whoops. Yes indeed. Hydrogen peroxide reacts with chlorine to produce oxygen and hydrochloric acid. In fact, hydrogen peroxide is actually used to dechlorinate water which contains levels of chlorine that are too high. It might not be the very worst thing you could add to the water (when you think of all the things that could end up swimming pools) but it’s definitely up there.

Why and how this happened doesn’t, at the moment, appear to be clear. Presumably someone is for the high jump, and not just on the athletics field.

You can follow The Chronicle Flask on Facebook at fb.com/chronicleflask, or on Twitter as @ChronicleFlask.

 

Is oxygen really that good for you?

dove oxygen shampoo officialI don’t find time for huge amounts of television these days, and certainly not adverts. But I recently caught an advert for Dove Oxygen Shampoo out of the corner of my eye, and it brought me up short. Of course, beauty products are full of nonsense generally. Think, for example, of L’Oreal’s famous ingredient, ‘Boswelox’. (A word which, thanks to the wonderful Karl Pilkington, has since acquired a whole new meaning.) A little while ago I wrote a post about a toothpaste that was claiming to contain ‘liquid calcium’ (if it were true, cleaning your teeth would be much more exciting, trust me). It’s just par for the course. Really, is there any point wasting valuable energy continuing to be annoyed by these things?

Well yes, actually. Because this kind of silly hogwash just reinforces the ridiculous ‘science is so terribly hard, oooh aren’t all the complicated words impressive?’ attitude that is so frustratingly prevalent in the world today.

Besides which, picking apart this kind of thing is practically the reason for the existence of this blog. So here goes.

Firstly, a few snippets from Dove’s website:

“Oxygen & Moisture shampoo, conditioner and finishing products are pumped with Oxyfusion Technology, a new generation of moisture. This system moisturises fine, flat hair, giving you hair volume.”

And clicking through a bit further:

“[the shampoo] provides conditioning ingredients fused with oxygen as it instantly dissolves on your hair and breathes life into it.”

Hm.

Let’s start with that last sentence. Firstly: it dissolves on your hair? What does that mean? I’m just going to mention here that the meaning of the word dissolve is taught in year 7 (first year, in old money) science in all secondary schools in this country, and has been for many, many years. So everyone should know it, even the employees of the media company that came up with this tosh. (If you don’t, and you’ve ever muttered anything whatsoever about slipping standards and/or grade inflation, shame on you.)

‘Dissolve’ usually refers to solids. Salt dissolves in water. Sugar dissolves in tea (yes all right, also mostly water). It means that the solid becomes incorporated into the liquid, forming a solution. I haven’t checked, but I’m assuming Dove’s shampoo is not solid, as that would make it rather difficult to get out of the bottle.

Ok, oils and fats dissolve in certain solvents (not water mind you), and they could feasibly be liquid and yet the word still applies. True enough. It’s possible that the original text was ‘dissolves the grease on your hair’ (more or less accurate enough), and some marketing guy said, ‘I like really love it, I really reaaaahhhly do, but can we just lose two words from the middle?’

And yes, I think it’s safe to assume their shampoo mixes with water, because that is quite an important feature of shampoo, but they haven’t said ‘dissolves in the water’, they’ve said ‘dissolves on the hair’, which does sort of give the impression that it’s your hair that’s somehow dissolving the shampoo. Which is just weird.

But misuse of the world dissolve is only a minor irritation. No, my bigger problem is ‘ingredients fused with oxygen’. What the Dove does that mean?

For years and years we’ve been told that oxidants are bad. Or at least, that antioxidants are good (although this hasn’t really been backed up by scientific studies).

Is it difficult to work out that oxygen is an oxidant? It’s the granddaddy of oxidants. It’s the oxidant that all the other oxidants were named after. Oxy/oxi – see?

Chemists have two definitions of oxidation, but they’re broadly equivalent. Oxidation can be thought of as gaining oxygen, or it can be thought of as loss of electrons. Electrons are the negatively-charged particles that surround atoms. I mention them because the phrase ‘free radicals’ often turns up in the same breath as ‘antioxidants’. Free radicals are atoms or molecules which have an unpaired electron. Electrons like to be paired up. They REALLY like to be paired up. When they’re not, they’ll do pretty much anything they can to get paired up. Unpaired electrons are, if you like, the desperate guy at the nightclub at the end of the night. This makes them incredibly reactive, which means they can cause cell damage.

Worse, this happens in a chain reaction – meaning that a single free radical can do an awful lot of harm. So where to antioxidants come in? Well, antioxidants react with free radicals and essentially stop them in their tracks.

oxygen cylinder

Don’t suck on this.

Jolly good. But you see where I’m going here? Oxygen is the complete opposite of this. Yes, we breathe oxygen. It’s quite important stuff. Certainly, if you run out of it you’re in trouble. But it’s far from harmless. The air we breathe is only about twenty-one percent oxygen. Too much oxygen is flat-out dangerous. Breathe air with something like 50% oxygen for any length of time and you risk damaging your lungs, eyes and central nervous system. Really. Hospitals control oxygen use very carefully, and scuba divers who use it have to undergo rigorous training. The fad for oxygen bars has caused real concern in some quarters.

What does ‘ingredients fused with oxygen’ mean? Does it mean Dove have somehow dissolved oxygen in their shampoo? I’m certain that it doesn’t, because this wouldn’t be stable, and it would likely cause your shampoo to ‘go off’ in some way very quickly. Does it mean that their shampoo contains an ingredient that releases oxygen somehow? Hydrogen peroxide famously does this, when it breaks down into oxygen and water. Of course hydrogen peroxide is used to bleach hair, so… probably not (and anyway, again, not stable).

I looked up the ingredients in Dove Oxygen Moisture shampoo (and I’ve reproduced them below). To be honest, looking at the list I’m drawing a blank. My suspicion is that they’re using ‘oxygen’ simply because it’s the latest trendy thing. Oxygen is common enough – water contains one atom of oxygen in every molecule for starters, so they’re safe with the idea that the shampoo contains oxygen in some form – just not elemental oxygen.

But, ok, if I had to pick something… there is an interesting ingredient called ‘guar hydroxypropyltrimonium chloride‘ in there. If that is the one that inspired them, I can see why they went with Oxyfusion Technology – guar hydroxypropyltrimonium chloride hardly trips off the tongue.

Sucrose

Table sugar (sucrose) – perhaps we should wash our hair with this?

620px-Guaran.svg

Guar gum – check your salad dressing. Another conditioning alternative perhaps?

I’ve picked that one out of the list partly because it has ‘hydroxy’ in its name. Now in reality, that just means it contains an -OH group or several. This isn’t anything particularly special, table sugar has eight of ’em. Guar hydroxypropyltrimonium chloride comes from guar gum, which in turn is made from guar beans. Guar gum is a food additive that’s used to thicken foods, and it turns up all over the place (check your salad dressing or ice cream).

Guar hydroxypropyltrimonium chloride has been shown to have conditioning properties, which explains its inclusion in shampoo (this is my other reason for picking it out). It probably does leave your hair feeling nice and soft. And it does have several -OH groups, so it arguably sort of works with the ‘conditioning ingredients fused with oxygen’ claim. In the sense that it has oxygen atoms chemically bonded to it. As does, you know, water.

There’s no way that it releases oxygen though. Now in fairness to Dove, that claim isn’t actually made explicitly anywhere, although the lovely bubbly imagery does its damnedest to imply it.

Bad-Hair-Day

Bad hair day?

And here’s the thing: even if you could, would you want to routinely use a product that releases oxygen directly onto your skin or hair? Given that oxygen is an oxidising agent, and is likely to cause cell damage in high concentrations? Just bear in mind what happens to hair that’s exposed to too much hydrogen peroxide.

And don’t even get me started on the dozens and dozens of moisturisers that claim to do the same. Really? Straight into your skin? There are even some products that claim to do both at once, which frankly is jolly clever. In the Doctor Who sense of clever. I.e. fictional.

But what I want to know is this: after years of anti-oxidant this, and anti-oxidant that, how have we managed to go in exactly the opposite direction without consumers saying ‘er, hang on a minute, surely this has to be a load of old boswelox?’

Ingredients in Dove Oxygen & Moisture Shampoo:
Aqua, Sodium Laureth Sulfate, Sodium Chloride, Cocamidopropyl Betaine, Glycerin, Citric Acid, Dimethiconol, Disodium EDTA, Guar Hydroxypropyltrimonium Chloride, Laureth-23, Parfum, PPG-12, TEA-Dodecylbenzenesulfonate, TES-Sulfate, DMDM Hydantoin, Sodium Benzoate, Amyl Cinnamal, Benzyl Alcohol, Benzyl Salicylate, Butylphenyl Methylpropional, Hexyl Cinnamal, Limonene, Linalool, CI 17200, CI 42090.