Hazardous homeopathy: ‘ingredients’ that ought to make you think twice

Would you take a medicine made with arsenic? Or deadly nightshade? Lead? Poison ivy?

You’d ask some serious questions first, at least, wouldn’t you? Is it definitely safe? Or, more accurately, are the odds better than even that it will make me better without causing horrible side-effects? Or, you know, killing me?

There ARE medicines that are legitimately made from highly toxic compounds. For example, the poison beloved of crime writers such as Agatha Christie, arsenic trioxide, is used to treat acute promyelocytic leukemia in patients who haven’t responded to other treatments. Unsurprisingly, it’s not without risks. Side-effects are unpleasant and common, affecting about a third of patients who take it. On the other hand, acute promyelocytic leukemia is fatal if untreated. A good doctor would talk this through with a patient, explain both sides, and leave the final choice in his or her properly-informed hands. As always in medicine, it’s a question of balancing risks and benefits.

Would you trust something with no proven benefit and a lot of potential risk? There are, it turns out, a swathe of entirely unregulated mixtures currently being sold in shops and online which clearly feature the substances I listed at the beginning. And more. Because they are all, supposedly, the starting materials in certain homeopathic remedies.

Homeopaths like to use unfamiliar, usually Latin-based, names which somewhat disguise the true nature of their ingredients. Here’s a short, but by no means comprehensive, list. (You might find remedies labelled differently but these are, as far as I can tell, the most common names given to these substances.)

If you haven’t heard of some of these, I do urge you to follow the links above, which will largely take you pages detailing their toxicology. Spoiler: the words “poison”, “deadly” and “fatal” feature heavily. These are nasty substances.

There are some big ironies here, and I’m not referring to the metal. For example, a common cry of anti-vaccinationists is that vaccines contain animal tissues – anything and everything from monkey DNA to dog livers. But many also seem to be keen to recommend homeopaths and courses of homeoprophylaxis – so-called “homeopathic vaccines” – which use bodily fluids such as pus and blood as starting materials.

Now, at this point I’m sure some of you are thinking, hang on a minute: aren’t you always telling us that “the dose makes the poison“? And aren’t homeopathic remedies diluted so much that none of the original substance remains, so they’re just placebos?

Yes, I am, and yes, they are.

Does anyone test homeopathic remedies to make sure there’s nothing in them….?

In THEORY. But here’s the problem: who’s testing these mixtures to make sure that the dilutions are done properly? And how exactly are they doing that (if they are)?

One technique that chemists use to identify tiny quantities of substance is gas chromatography (GC). This is essentially a high-tech version of that experiment you did at school, where you put some dots of different coloured ink on a piece of filter paper and watched them spread up the paper when you put it in some water.

GC analysis is brilliant at identifying tiny quantities of stuff. 10 parts per million is no problem for most detectors, and the most sensitive equipment can detect substances in the parts per billion range. Homeopathy dilutions are many orders of magnitude higher than this (30c, for example, means a dilution factor of 1060), but this doesn’t matter – once you get past 12c (a factor of 1024) you pass the Avogadro limit.

This is because Avogadro’s number, which describes the number of molecules in what chemists call a “mole” of a substance, is 6×1023. For example, if you had 18 ml of water in a glass, you’d have 6×1023 molecules of H2O. So you can see, if you’ve diluted a small sample by a factor of 1024 – more than the total number of molecules of water you had in the first place – the chances are very good that all you have is water. There will be none of the original substance left. (This, by the way, is of no concern to most homeopaths, who believe that larger dilutions magically produce a stronger healing effect.)

What if the sample ISN’T pure water after it’s been diluted?

If you carried out GC analysis of such a sample, you should find just pure water. Indeed, if you DIDN’T find pure water, it should be cause for concern. Potassium cyanide, for example, is toxic at very low levels. The lethal dose is is only 0.2-0.3 grams, and you’d suffer unpleasant symptoms long before you were exposed to that much.

So what if the dilutions somehow go wrong? What if some sample gets stuck in the bottle? Or on the pipette? Or a few dilution steps get skipped for some reason?

Are these largely unregulated companies rigorously quality-checking their remedies?

Well, maybe. It’s possible some producers are testing their raw materials for purity (ah yes, another question: they CLAIM they’re starting with, say, arsenic, but can we be certain?), and perhaps testing the “stability” of their products after certain periods of time (i.e. checking for bacterial growth), but are they running tests on the final product and checking that, well, there’s nothing in it?

And actually, isn’t this a bit of a conflict? If the water somehow “remembers” the chemical that was added and acquires some sort of “vibrational energy”, shouldn’t that show up somehow in GC analysis or other tests? If your tests prove it’s pure water, indistinguishable from any other sample of pure water, then… (at this point homeopaths will fall back on arguments such as “you can’t test homeopathy” and “it doesn’t work like that”. The name for this is special pleading.)

A warning was issued in the U.S. after several children became ill.

Am I scaremongering? Not really. There’s at least one published case study describing patients who suffered from arsenic poisoning after using homeopathic preparations. In January this year the U.S. Food and Drug Administration issued a warning about elevated levels of belladonna (aka deadly nightshade) in some homeopathic teething products. Yes, teething products. For babies. This warning was issued following several reports of children becoming ill after using the products. The FDA said that its “laboratory analysis found inconsistent amounts of belladonna, a toxic substance, in certain homeopathic teething tablets, sometimes far exceeding the amount claimed on the label.”

Now, admittedly, I’m based in the U.K. and these particular teething remedies were never readily available here. But let’s just type “homeopathy” into the Boots.com (the British high-street pharmacy) website and see what pops up… ah yes. Aconite Pillules, 30c, £6.25 for 84.

What happens if you search for “homeopathy” on the Boots.com website?

Have you been paying attention lovely readers? Aconite is…. yes! Monkshood! One of the most poisonous plants in the garden. Large doses cause instant death. Smaller doses cause nausea and diarrhea, followed by a burning and tingling sensation in the mouth and abdomen, possibly muscle weakness, low blood pressure and irregular heartbeat.

I must stress at this point that there is no suggestion, absolutely none whatsoever, that any of the products for sale at Boots.com has ever caused such symptoms. I’m sure the manufacturers check their preparations extremely carefully to ensure that there’s absolutely NO aconite left and that they really are just very small, very expensive, sugar pills.

Well, fairly sure.

In summary, we seem to be in a situation where people who proclaim that rigorously-tested and quality-controlled pharmaceuticals are “toxic” also seem to be happy to use unregulated homeopathic remedies made with ACTUALLY toxic starting materials.

I wonder if the new “documentary” about homeopathy, Just One Drop, which is being screened in London on the 6th of April will clarify this awkward little issue? Somehow, I doubt it. Having watched the trailer, I think it’s quite clear which way this particular piece of film is going to lean.

One last thing. Some homeopathic mixtures include large quantities of alcohol. For example, the Bach Original Flower Remedies are diluted with brandy and contain approximately 27% alcohol (in the interests of fairness, they do also make alcohol-free versions of some of their products and, as I’ve recently learned, they may not be technically homeopathic). Alcohol is a proven carcinogen. Yes, I know, lots of adults drink moderate quantities of alcohol regularly and are perfectly healthy, and the dose from a flower remedy is minuscule, but still, toxins and hypocrisy and all that.

There are cheaper ways to buy brandy than Bach Flower Remedies.

Amusingly, the alcohol in these remedies is described an “inactive” ingredient. It’s more likely to be the only ACTIVE ingredient. And since Flower Remedies retail for about £7 for 20 ml (a mighty £350 a litre, and they’re not even pure brandy) may I suggest that if you’re looking for that particular “medicine” you might more wisely spend your money on a decent bottle of Rémy Martin?

Like the Chronicle Flask’s Facebook page for regular updates, or follow @chronicleflask on Twitter. In need of a groovy new mug for your oh-so-healthy coffee? Check out this page.

All comments are moderated. Abusive comments will be deleted, as will any comments referring to posts on this site which have had comments disabled.

Is acrylamide in your toast really going to give you cancer?

Acrylamide has been in the news today, and this might be the understatement of the year. Front page newspaper headlines have been yelling everything from “Brits officially warned off chips” to “Over-cooked potatoes and burnt toast could cause cancer” to the marginally more restrained “What is the real cancer risk from eating roast potatoes or toast?” All this has been accompanied by radio interviews with everyone from actual scientists to professional chefs to people keen to share their roast potato recipes. I expect there have been television interviews too – I haven’t had a chance to watch.

Hey, what could be more traditional, or more fun, than a food-health scare in January?



Never fear, the Chronicle Flask is here to sort out the science. Let’s get to the facts: what is acrylamide?

It’s actually a rather small molecule, and it falls into a group of substances which chemists call amides. Other well-known amides include paracetamol and penicillin, and nylon is a polyamide – that is, lots of amide molecules joined together. Amide linkages (the CO-NH bit) are a key feature of proteins, which means they appear in all kinds of naturally-occurring substances.

And this is where the food-acrylamide link comes in. Because acrylamide, or prop-2-enamide to give it its official name (the one only ever used by A-level chemistry students), forms when certain foods are cooked.

Acrylamide occurs naturally in fried, baked, and roasted starchy foods.

Acrylamide occurs naturally in fried, baked, and roasted starchy foods.

It begins with an amino acid called asparagine. If you’re wondering whether, with that name, it has anything to do with asparagus, you’d be on the right track. It was first isolated in the early 1800s from asparagus juice. It turns out to be very common: it’s found in dairy, meat, fish and shellfish, as well as potatoes, nuts, seeds and grains, amongst other things.

This is where the trouble begins. When asparagine is combined with sugars, particularly glucose, and heated, acrylamide is produced. The longer the food is heated for, the more acrylamide forms. This is a particular issue with anything wheat or potato-based thanks to the naturally-occurring sugars those foods also contain – hence all the histrionics over chips, roast potatoes and toast.

How dangerous is acrylamide? The International Agency for Research on Cancer have classified it as a Group 2A carcinogen, or a “probable” carcinogen. This means there’s “limited evidence” of carcinogenicity in humans, but “sufficient evidence” of carcinogenicity in experimental animals. In other words (usually) scientists know the thing in question causes cancer in rats – who’ve generally been fed huge amounts under strictly controlled conditions – but there isn’t any clear evidence that the same link exists in humans. It’s generally considered unethical to lock humans in cages and force feed them acrylamide by the kilo, so it’s tricky to prove.

screen-shot-2017-01-23-at-22-10-46At this point I will point out that alcoholic beverages are classified as Group 1 carcinogens, which means there is “sufficient evidence” of carcinogenicity in humans. Alcohol definitely causes cancer. If you’re genuinely concerned about your cancer risk, worry less about the roast potatoes in your Sunday roast and more about the glass of wine you’re drinking with them.

But back to acrylamide. In animals, it has been shown to cause tumours. It’s one of those substances which can be absorbed through the skin, and after exposure it spreads around the body, turning up in the blood, unexposed skin, the kidneys, the liver and so on. It’s also been shown to have neurotoxic effects in humans. BUT, the evidence that it causes cancer in humans under normal conditions isn’t conclusive. A meta-analysis published in 2014 concluded that “dietary acrylamide is not related to the risk of most common cancers. A modest association for kidney cancer, and for endometrial and ovarian cancers in never smokers only, cannot be excluded.” 

The dose makes the poison is an important principle in toxicology (image credit: Lindsay Labahn)

The dose makes the poison (image credit: Lindsay Labahn)

As I so often find myself saying in pieces like this: the dose makes the poison. The people who have suffered neurotoxic effects from acrylamide have been factory workers. In one case in the 1960s a patient was handling 10% solutions of the stuff, and “acknowledged that the acrylamide solution frequently had splashed on his unprotected hands, forearms and face.” The earliest symptom was contact dermatitis, followed by fatigue, weight loss and nerve damage.

Because of these very real risks, the Occupational Safety and Health Administration and the National Institute for Occupational Safety and Health have set occupational exposure limits at 0.03 mg/m3 over an eight-hour workday, or 0.00003 g/m3.

Let’s contrast that to the amount of acrylamide found in cooked food. The reason all this fuss erupted today is that the Food Standards Agency (FSA) published some work which estimated the amounts of acrylamide people are likely to be exposed to in their everyday diet.

The highest concentrations of acrylamide were found in snacks (potato crisps etc), and they were 360 μg/kg, or 0.00036 g/kg or, since even the most ardent crisp addict doesn’t usually consume their favoured snacks by the kilo, 0.000036 g/100g. (Remember that those occupational limits are based on continuous exposure over an eight-hour period.)

In other words, the amounts in even the most acrylamide-y of foodstuffs are really quite tiny, and the evidence that acrylamide causes cancer in humans is very limited anyway. There is some evidence that acrylamide accumulates in the body, though, so consuming these sorts of foods day in and day out over a lifetime could be a concern. It might be wise to think twice about eating burnt toast every day for breakfast.

Oh yes, and there’s quite a lot of acrylamide in cigarette smoke. But somehow I doubt that if you’re a dedicated smoker this particular piece of information is going to make much difference.

As the FSA say at the end of their report:

Your toast almost certainly isn't going to kill you.

Your toast almost certainly isn’t going to kill you.

“The dietary acrylamide exposure levels for all age classes are of possible concern for an increased lifetime risk of cancer. The results of the survey do not increase concern with respect to acrylamide in the UK diet but do reinforce FSA advice to consumers and our efforts to support the food industry in reducing acrylamide levels.”

This is not, I would suggest, QUITE the same as “Crunchy toast could give you cancer, FSA warns” but, I suppose, “FSA says risk hasn’t really changed” wouldn’t sell as many newspapers.

One last thing, there’s acrylamide in coffee – it forms when the beans are roasted. There’s more in instant coffee and, perhaps counterintuitively, in lighter-roasted beans. No one seems to have mentioned that today, possibly because having your coffee taken away in January is just too terrifying a prospect to even contemplate. And also perhaps because coffee seems to be associated with more health benefits than negatives. Coffee drinkers are less likely to develop type 2 diabetes, Parkinson’s disease, dementia, suffer fewer cases of some cancers and fewer incidences of stroke. Whether the link is causal or not isn’t clear, but coffee drinking certainly doesn’t seem to be a particularly bad thing, which just goes to show that when it comes to diet, things are rarely clearcut.

Pass the crisps, someone.

Like the Chronicle Flask’s Facebook page for regular updates, or follow @chronicleflask on Twitter. In need of a groovy new mug for your oh-so-healthy coffee? Check out this page.

All comments are moderated. Abusive comments will be deleted, as will any comments referring to posts on this site which have had comments disabled.


Is it possible to give up sugar completely?

It’s January, a month that’s traditionally marked by cold weather, large credit-card bills and, of course, an awful lot of highly questionable health stuff. Juicing, detox, supplements… it’s all good fun. Until someone gets hurt.

"Refined" sugar is almost entirely made up of a molecule called sucrose.

“Refined” sugar is almost entirely made up of a molecule called sucrose.

One substance that regularly gets a bashing is sugar, particularly so-called “refined” sugar. We’re told it’s toxic (it’s not), it’s more addictive than cocaine (it isn’t) and we should definitely all be trying to give it up.

Now, before I go any further with this, a word about healthy eating. I’m not a dietician. I don’t even claim to be a nutritionist (although I could, if I wanted). However, I think I’m on fairly safe ground if I say that we should all be striving for a healthy, balanced diet. That is, a diet containing a broad range of foods, plenty of fruits and vegetables, healthy amounts of protein and some good fats.

A lot of people have diets that fall short of this ideal. Cutting back on foods which contain a lot of added sugar (cakes, chocolate, fizzy drinks, etc) and eating more vegetables and fruits is a good, and sensible, course of action.

The problem is that bit of common-sense advice doesn’t sell books or make an interesting TV show. It’s all a bit boring and, worse, it’s freely available. Compelling entertainment needs to be more exciting, more dramatic, more… extreme.

Which brings us to ITV’s Sugar Free Farm.

Page 81 of the current issue of Radio Times tells us that the celebrities face a "completely sugar-free regime".

Page 81 of the current issue of Radio Times tells us that the celebrities face a “completely sugar-free regime”.

This is actually the second series of this show, which first aired last year. According to the 7-13th January 2017 issue of the Radio Times:

“Seven celebrities who admit to terrible diets succumb to a few weeks of hard farm labour and a completely sugar-free regime (so no white carbs or fruit, let alone chocolate).”

Hm. Now, I’ve written about sugar more than once before, but to save clicking back and forth, here’s another quick summary:

Sugar is not one thing. The chemistry of sugars is quite complicated, but a human being trying to understand the food they eat probably needs to be aware of three main types, namely: glucose, fructose and sucrose.



Glucose is the sugar that all your cells need. Not having enough glucose in your bloodstream is called hypoglycaemia, and the result is seizure, coma and ultimately death. This isn’t a risk for healthy people without pre-existing conditions (like diabetes, for example) because evolution has put some clever safety-nets in place. First, our bodies are extremely efficient at carrying out the necessary chemistry to turn the molecules we eat into the molecules we need. Should that fail, our bodies are very good at storing nutrients to use in times when our diet doesn’t supply them. If you don’t eat glucose, your body will break down other foods to produce it, then it’ll start on your glycogen stores, move on to fat stores, and eventually start breaking down protein (i.e. the stuff in your muscles). This means that unless you stop eating completely for a fairly long period of time, you’ll survive.

Still, I think it’s important to emphasise the point: glucose is essential for life. The suggestion that this substance is “toxic” and thus should be completely eliminated from our diets is really, when you think about it, a bit odd.

Sucrose ("refined sugar") is a unit of glucose joined to a unit of fructose

Sucrose (“refined sugar”) is a unit of glucose joined to a unit of fructose

Ah but, I hear some people saying, no one is saying that glucose is toxic! They’re talking about refined sugar!

Fine. So what’s “refined” sugar? In simple terms, it’s pure sucrose. And sucrose is just a molecule made from a unit of glucose stuck to a unit of fructose. As I said, our bodies are really good at breaking up the molecules we eat into the molecules we need: our cells can’t use sucrose for energy, so all that happens is that it more or less instantly gets broken up into glucose and fructose.

Refined sugar is, basically, half glucose and half fructose, and it’s no more dangerous or “toxic” than either of those substances. And while I’m here, “natural” sugar options are little different: honey, for example, contains similar ratios of fructose and glucose.



Allrighty then, what’s fructose? Fructose is another simple sugar, and it’s the one that plants produce. For that reason it’s sometimes called “fruit sugar”.

Our cells can’t use fructose for energy, either. But, same thing again: if you eat it your body will still use it. In this case, your liver does the heavy lifting; changing fructose into glucose and other substances, some of which are fats. On the one hand, this is a slower process so you don’t get the blood sugar spike with fructose that you get with glucose. On the other, some of the fructose you eat inevitably ends up being converted into fat.

As I mentioned, fructose is the sugar in plants. It’s found in almost all plant-based foods. For example, the USDA food composition database tells us that 100 g of carrots contains about 0.6 g of fructose. Perhaps surprisingly, broccoli contains slightly more: about 0.7 g per 100 g. Iceberg lettuce contains even more, at 1 g per 100 g, whereas green peas contain a mere 0.4 g.

Even a really small glass of fruit juice contains about 150 g.

Even a small serving of fruit juice usually contains at least 150 g.

None of this comes close to fruit. Apples contain about 6 g of fructose per 100 g, grapes 4 g and bananas 5 g. Dried fruit, as you’d expect, has considerably higher amounts by weight – because the water’s gone. Juices have similar amounts of fructose per unit of weight but, of course, you tend to drink a lot more than 100 g of juice at a time.

Now we understand why “Sugar Free Farm” has banned fruit. But this is why I have a problem with the title: you CAN’T eat an entirely “sugar-free” diet, unless all you eat is meat, fish, eggs and dairy products like cream and butter (but not milk, which contains lots of another sugar: lactose). This would be a far from healthy diet, seriously lacking in fibre as well as a host of vitamins and minerals (even “phase 1” or the “induction” period of the controversial Atkins diet isn’t quite this extreme).

The show hasn’t aired yet, and I admit I didn’t watch it last year, so I don’t know if that’s what they’re doing. But I seriously doubt it – it would be unethical and irresponsible. Plus, the words “white carbs” in the listings blurb make me suspicious. Why specify “white”? Are whole grains included? And what about pulses? Whole grain foods might be relatively low in fructose and glucose before you put them in your mouth, but as soon as saliva hits them the starch they contain is broken down into…. glucose. By the time you swallow that chewed-up food, it contains sugar.

In summary, Sugar Free Farm is almost certainly not sugar free. What they appear to have set up is a place where sugars are restricted and foods with added sugar are banned, and then mixed that with lots of outdoor activities (the celebrities are also expected to work on the farm).

Most people would lose weight following such a regime, because it’s likely that calories in are going to be lower than calories out. It’s a simple calorie deficit.

give-up-sugarWhat bothers me is that the show might go on to conclude that we should all “give up” sugar to lose weight – and some people might misinterpret that and end up embarking on an unbalanced, unhealthy and ultimately unsustainable diet – when in fact the results are simply due to calorie deficit.

There’s no need to try to give up sugar. Cut down, yes, but you can eat some sweet foods and still manage a calorie deficit. In fact you probably should: fruit in particular has lots of nutrients, including fibre. Besides, such a diet will probably be a lot more sustainable in the long term.

Unfortunately, “Eat Fewer Calories And Do Some Exercise Farm” doesn’t have quite the same ring, does it?

EDIT, 11th Jan 2017

Well, the first episode aired last night. No, the diet is not “zero sugar”. It’s very low in sugar, yes, but there are sugars. They used milk (contains lactose), ate wholemeal bread, brown rice and oats (all of which are broken down into glucose) and ate a variety of vegetables which, as I mentioned above, all contain small amounts of sugar. In fact, on their very first morning they eat a strange granola mixture made with sweet potato. The USDA food database tells me that sweet potato contains about 0.4 g of fructose, 0.5 g of glucose, 3.3 g of maltose AND 1.4 g of sucrose per 100 g. Yep. Sucrose. The stuff in “refined” sugar.

There was much talk of “detox” and “detoxing” from sugar. Sigh. That’s not a thing. Most worryingly of all, poor Peter Davison (he was “my” Doctor, you know) was carted off in an ambulance on the second day, suffering with dizzy spells. Everyone immediately started talking about how dreadful it was that “sugar” had caused this. There was only one, in passing, comment shown suggesting that perhaps the 65-year-old might have something else wrong with him. In fact, it turned out that he had labyrinthitis, an inner-ear condition. It’s usually viral. It’s not caused by “sugar withdrawal”. I’m sure they’ll make that clear in the next episode, right?

Speaking of which, the celebrities are on Sugar Free Farm for 15 days. A safe rate of weight loss is generally considered to be 0.5-1 kg (or 1-2 lb) a week. So they should lose about 2 kg, or 4 lb, on the outside. A snippet was shown at the end of the program in which Alison Hammond said she was “pleased” she’d lost 8 lbs. Whether that was after two weeks or a shorter period of time wasn’t clear, but either way, it’s a lot. It suggests that her diet is/was too low in calories, particularly considering all the extra physical activity.  Perhaps some of her so-called “sugar withdrawal” symptoms were actually simply due to the fact that she wasn’t consuming enough to keep up with her energy needs?

That aside, the diet they followed did seem to be fairly balanced, with plenty of vegetables and adequate healthy fats and protein. They had all been eating huge quantities of sugary foods beforehand, and cutting down is no bad thing. I’m just skeptical about exactly how much of the bad, and indeed the good, can be pinned on sugar.

Still, it made good telly I suppose.

Like the Chronicle Flask’s Facebook page for regular updates, or follow @chronicleflask on Twitter. In need of a groovy new mug? Check out this page.

All comments are moderated. Abusive comments will be deleted, as will any comments referring to posts on this site which have had comments disabled.

The Chronicles of the Chronicle Flask: 2016

2016 is limping to its painful conclusion, still tossing out last-minute nasty surprises like upturned thumb tacks in the last few metres of a marathon. But the year hasn’t been ALL bad. Some fun, and certainly interesting, things happened too. No, really, they did, honestly.

So with that in mind, let’s have a look back at 2016 for the Chronicle Flask….

January kicked off with a particularly egregious news headline in a well-known broadsheet newspaper: Sugar found in ketchup and Coke linked to breast cancer. Turns out that the sugar in question was fructose. Yes, the sugar that’s in practically everything, and certainly everything that’s come from a plant. So why did the newspaper in question choose ketchup and Coke for their headline instead of, oh, say, fruit juice or honey? Surely not just in an effort to sell a few more newspapers after the overindulgent New Year celebrations. Surely.

octarineThere was something more lighthearted to follow when IUPAC  verified the discoveries of elements 113, 115, 117 and 118. This kicked off lots of speculation about the elements’ eventual names, and the Chronicle Flask suggested that one of them should be named Octarine in honour of the late Sir Terry Pratchett. Amazingly, this suggestion really caught everyone’s imagination. It was picked up in the national press, and the associated petition got over 51 thousand signatures!

In February I wrote a post about the science of statues, following the news that a statue to commemorate Sir Terry Pratchett and his work had been approved by Salisbury City Council. Did you know that there was science in statues? Well there is, lots. Fun fact: the God of metalworking was called Hephaestus, and the Greeks placed dwarf-like statues of him near their Hearths – could this be where the fantasy trope of dwarves as blacksmiths originates?

MCl and MI are common preservatives in cosmetic products

MCl and MI are common preservatives in cosmetic products

My skeptical side returned with a vengeance in March after I read some online reviews criticising a particular shampoo for containing a substance known as methylchloroisothiazolinone. So should you be scared of your shampoo? In short, no. Not unless you have a known allergy or particularly sensitive skin. Otherwise, feel free to the pick your shampoo based on the nicest bottle, the best smell, or the forlorn hope that it will actually thicken/straighten/brighten your hair as promised, even though they never, ever, ever do.

Nature Chemistry published Another Four Bricks in the Wall in April – a piece all about the potential names of new elements, partly written by yours truly. The month also brought a sinus infection. I made the most of this opportunity by writing about the cold cure that’s 5000 years old. See how I suffer for my lovely readers? You’re welcome.

In May I weighed in on all the nonsense out there about glyphosate (and, consequently, learned how to spell and pronounce glyphosate – turns out I’d been getting it wrong for ages). Is it dangerous? Nope, not really. The evidence suggests it’s pretty harmless and certainly a lot safer than most of its alternatives.

may-facebook-postSomething else happened in May: the Chronicle Flask’s Facebook page received this message in which one of my followers told me that my post on apricot kernels had deterred his mother from consuming them. This sort of thing makes it all worthwhile.

In June the names of the new elements were announced. Sadly, but not really very surprisingly, octarine was not among them. But element 118 was named oganesson and given the symbol Og. Now, officially, this was in recognition of the work of Professor Yuri Oganessian, but I for one couldn’t help but see a different reference. Mere coincidence? Surely not.

July brought another return to skepticism. This time, baby wipes, and in particular a brand that promise to be “chemical-free”. They’re not chemical-free. Nothing is chemical-free. This is a ridiculous label which shouldn’t be allowed (and yet, inexplicably, is still in use). It’s all made worse by the fact that Water Wipes contain a ‘natural preservative’ called grapefruit seed extract which, experiments have shown, only actually acts as a preservative when it’s contaminated with synthetic substances. Yep. Turns out some of Water Wipes claims are as stinky as the stuff they’re designed to clean up.

Maria Lenk Aquatic Enter, Tuesday, Aug. 9, 2016. (AP Photo/Matt Dunham)

Maria Lenk Aquatic Enter, Tuesday, Aug. 9, 2016. (AP Photo/Matt Dunham)

August brought the Olympics, and speculation was rife about what, exactly, was causing the swimming pools to turn such strange shades of green. Of course, the Chronicle Flask knew the correct solution…

August also saw MMS and CD reared their ugly heads on social media again. CD (chlorine dioxide) is, lest we forget, a type of bleach solution which certain individuals believe autistic children should be made to drink to ‘cure’ them. Worse, they believe such children should be forced to undergo daily enemas using CD solutions. I wrote a summary page on MMS (master mineral solution) and CD, as straight-up science companion to the commentary piece I wrote in 2015.

mugsSeptember took us back to pesticides, but this time with a more lighthearted feel. Did you know that 99.99% of all the pesticides you consume are naturally-occurring? Well, you do if you regularly read this blog. The Chronicle Flask, along with MugWow, also produced a lovely mug. It’s still for sale here, if you need a late Christmas present… (and if you use the code flask15 you’ll even get a discount!)

In October, fed up with endless arguments about the definition of the word ‘chemical’ I decided to settle the matter once and for all. Kind of. And following that theme I also wrote 8 Things Everyone Gets Wong About ‘Scary’ Chemicals for WhatCulture Science.

Just in case that wasn’t enough, I also wrote a chapter of a book on the missing science of superheroes in October. Hopefully we should see it in print in 2017.

Sparklers are most dangerous once they've gone out.

Sparklers are most dangerous once they’ve gone out.

I decided to mark Fireworks Night in November by writing about glow sticks and sparklers. Which is riskier? The question may not be as straightforward as you’d imagine. This was followed by another WhatCulture Science piece, featuring some genuinely frightening substances: 10 Chemicals You Really Should Be Scared Of.

And that brings us to December, and this little summary. I hope you’ve enjoyed the blog this year – do tell your friends about it! Remember to follow @ChronicleFlask on Twitter and like fb.com/chronicleflask on Facebook – both get updated more or less daily.

Here’s wishing all my lovely readers a very Happy New Year – enjoy a drop of bubbly ethanol solution and be careful with the Armstrong’s mixture…. 

See you on the other side!


8 Things Everyone Gets Wrong About ‘Scary’ Chemicals

scaryChemicals. The word sounds a little bit scary, doesn’t it? For some it probably conjures up memories of school, and that time little Joey heated something up to “see what would happen” and you all had to evacuate the building. Which was actually good fun – what’s not to love about an unplanned fire drill during lesson time?

But for others the word has more worrying associations. What about all those lists of additives in foods, for starters? You know, the stuff that makes it all processed and bad for us. Don’t we need to get rid of all of that? And shouldn’t we be buying organic food, so we can avoid ….

….Read the rest of this article at WhatCulture Science.

This is my first article for WhatCulture Science – please do click the link and read the rest!

Like the Chronicle Flask’s Facebook page for regular updates, or follow @chronicleflask on Twitter. In need of a groovy new mug? Check out this page.

What’s all the fuss about glyphosate?

Glyphosate, the key ingredient in Monsanto’s weedkiller Roundup, has been in the news recently. A few weeks ago it was widely reported that a UN/WHO study had shown it was ‘unlikely to pose a carcinogenic risk to humans‘. But it then emerged that the chairman of the UN’s joint meeting on pesticide residues (who, incidentally, has the fabulous name of Professor Boobis) also runs the International Life Science Institute (ILSI). Which had received a $500,000 donation from Monsanto, and $528,500 from an industry group which represents Monsanto among others.

And then it transpired that there was going to be an EU relicensing vote on glyphosate two days after the (since postponed) UN/WHO report was released, which resulted in another outcry.

Glyphosate molecule

A molecule of glyphosate

So what is glyphosate, and why all the fuss?

It was first synthesized in 1950 by Swiss chemist Henry Martin. It was later, independently, discovered at Monsanto. Chemists there were looking at water-softening agents, and found that some of them also killed certain plants. A chemist called John E. Franz was asked to investigate further, and he went on to discover glyphosate. He famously received $5 for the patent.

Chemically, glyphosate is a fairly simple molecule. It’s similar in structure to amino acids, the building blocks of all proteins, in that it contains a carboxylic acid group (the COOH on the far right) and an amine group (the NH in the middle). In fact, glyphosate is most similar to the smallest of all amino acids, glycine. Where it deviates is the phosphonic group (PO(OH2)) on the left. This makes it a (deep breath) aminophosphonic analogue of glycine. Try saying that when you’ve had a couple of beers.

As is usually the way in chemistry, changing (or indeed adding) a few atoms makes a dramatic difference to the way the molecule interacts with living systems. While glycine is more or less harmless, and is in fact a key component of proteins, glyphosate is a herbicide.

This probably bears stressing. It’s a herbicide. Not an insecticide. A herbicide.

Crop spraying

Glyphosate is a herbicide, not an insecticide.

I say this because people often conflate the two – after all, they’re both chemicals you spray on plants, right? – but they are rather different beasts. Insecticides, as the name suggests, are designed to kill insects. The potential problem being that other things eat those creatures, and if we’re not careful, the insecticide can end up in places it wasn’t expected to end up, and do things it wasn’t expected to do. This famously happened with DDT, a very effective pesticide which unfortunately also had catastrophic effects on certain predatory birds when they ate the animals that had eaten the slightly smaller animals which had eaten the insects that had eaten the other insects (and so on) that had been exposed to the DDT.

Herbicides, on the other hand, kill plants. Specifically, weeds. They’re designed to work on the biological systems in plants, not animals. Often, they have no place to bind in animals and so are simply excreted in urine and faeces, unchanged. Also, since plants aren’t generally known for getting up and wandering away from the field in which they’re growing, herbicide sprays tend to stay more or less where they’re put (unless there’s contamination of waterways, but this can – and should, if the correct procedures are followed – be fairly easily avoided).

Nicotine pesticide

Nicotine is an effective insecticide. It’s also extremely toxic.

Now this is not to say we should be careless with herbicides, or that they’re entirely harmless to humans and other animal species, but we can cautiously say that, in general, they’re rather less harmful than insecticides. In fact, glyphosate in particular is less harmful than a lot of everyday substances. If we simply look at LD50 values (the amount of chemical needed to provide a lethal dose to half of a test population), glyphosate has an LD50 of 4900 mg/kg whereas, for comparison, table salt has an LD50 of 3000. Paracetamol (acetaminophen) has an LD50 of 338, and nicotine (a very effective insecticide, as well as being the active ingredient in cigarettes) has an LD50 of just 9.

Of course, there’s more to toxicity than just killing things, and that’s where it gets tricky. Yes, it might take more than a third of a kilo to kill you outright, but could a smaller amount, particularly over an extended period of time, have more subtle health effects?

But before we go any further down that rabbit hole, let’s take a look at that ‘smaller amount’. Certain campaigners (they always seem to have some sort of stake in the huge business that is organic food, ahem) would have us believe that food crops are ‘drenched’ in glyphosate, and that consumers are eating significant quantities of it every day.

Here’s a great graphic, made by Sarah Shultz of the Nurse Loves Farmer blog (reproduced with her kind permission), that answers this question nice and succinctly:

How much glyphosate?

How much glyphosate is sprayed on crops? (Reproduced with permission of Sarah Shultz)

It’s about 1 can of soda’s worth per acre. Or, if you find an acre hard to visualise, roughly ten drops for every one hundred square feet – the size of a smallish bedroom.

In other words, not a lot. It’s also worth remembering that although there is some pre-harvest spraying – particularly of wheat crops – no farmer is spraying their crops five minutes before harvest. What would be the point of that? Farmers have margins, just like any other business, and chemicals cost money. If you’re going to use them, you use them in the most efficient way you can. The point of spraying pre-harvest is to kill any weeds that might be present so that they don’t get into your harvest. This takes time to happen, so it’s done seven to fourteen days before harvesting takes place. It’s also carefully timed in the growing cycle. Once wheat turns yellow, it’s effectively dead – it’s neither photosynthesising nor transporting nutrients – so if it’s sprayed at this point, glyphosate isn’t moved from the plant into the grain of the wheat. Which means it doesn’t make it into your food.

The long and short of all this is that if there IS any glyphosate in food crops, it’s in the parts per billion range. So is that likely to be harmful?

In March 2015 the International Agency for Research on Cancer (IARC) – the cancer-research arm of the World Health Organisation – announced that glyphosate was ‘probably carcinogenic to humans’, or category 2A. It needs to be pointed out that this outcome was controversial, as this post by The Risk Monger explains. But even that controversy aside, lots of things fall into category 2A, for example smoke from wood-burning fires, red meat, and even shift work. The IARC did note that the evidence mainly involved small studies and concerned people that worked with glyphosate, not the general public, and that recommendations were partly influenced by the results of animal studies (really, go and read that Risk Monger post). The one large-cohort study, following thousands of farmers, found no increased risk.

And by the way, alcohol has been classified as a Group 1 carcinogen, meaning it’s definitely known to cause cancer in humans. If you’re worried about glyphosate in wine and beer, I respectfully suggest you have your priorities the wrong way round.

So, the tiny traces of glyphosate that might be on food definitely aren’t going to poison you or give you cancer. Are there any other health effects?

Gut bacteria

Glyphosate isn’t interfering with your gut bacteria (image: microbeworld.org)

One thing that the health campaigners like to talk about is gut health. Their logic, such as it is, follows that glyphosate passes though our body largely unchanged. Now, you might imagine this would be a good thing, but according to these particular corners of the internet, it’s exactly the opposite. Glyphosate is known to be anti-microbial, and since it’s not changed as it passes through the body, the argument goes that it gets into our guts and starts wiping out the microbes in our digestive system, which have been increasingly linked to a number of important health conditions.

It sort of makes sense, but does it have any basis in fact? Although glyphosate can act as an antimicrobial in fairly large quantities in a petri dish in a laboratory, it doesn’t have a significant effect in the parts per billion quantities that might make their way to your gut from food. Glyphosate prevents bacteria from synthesising certain essential amino acids (it does the same thing to plants; that’s basically how it works) but in the gut these bacteria aren’t generally synthesising those amino acids, because they don’t need to. The amino acids are already there in fairly large quantities; bacteria don’t waste energy making something that’s readily available. In short, glyphosate stops bacteria doing something they weren’t doing anyway. So no, no real basis in fact.

I have so far avoided mentioning GMOs, or genetically-modified organisms. “GMO” often gets muttered in the same breath as glyphosate because certain crops have been modified to resist glyphosate. If they weren’t, it would damage them, too. So the argument goes that more glyphosate is used on those crops, and if you eat them, you’ll be exposed to more of it. But, as I said earlier, farmers don’t throw chemicals around for fun. It costs them money. Plus, not-really-surprisingly-if-you-think-about-it, farmers are usually quite environmentally-conscious. After all their livelihood relies on it! Most of them use multiple, non-chemical methods to control weeds, and then just add the smallest amount of herbicide they can possibly get away with to manage the last few stragglers.

Ah, but even a little bit is too much, you say? Why not eat organic food? Then there will be absolutely no nasty chemicals at all. Well, except for the herbicides that are approved for use in organic farming, and all the other approved chemicals, famously copper sulfate and elemental sulfur, both of which are considerably more toxic than glyphosate by anyone’s measure. And, of course, organic food is much more expensive, and simply not a feasible way of feeding over seven billion people. Perhaps, instead of giving farmers a hard time over ‘intensive’ farming, we should be supporting a mixture of sustainable methods with a little bit of, safe, chemical help where necessary?

In summary, the evidence suggests that glyphosate is pretty safe. Consuming the tiny traces that might be present in food is not going to give you cancer, won’t cause some sort of mysterious ‘leaky gut’ and it’s definitely not to poison you. There is a lot of fuss about glyphosate, but it’s really not warranted. Have another slice of toast.

EDIT 2nd June 2016

After I wrote this post, a very interesting article came my way…

  • Petaluma city suspended use of glyphosate in favour of alternatives. Notable quote:“Having used the alternative herbicides over the past two months, DeNicola said crews have needed to apply the treatments more often to achieve similar results. The plants are also likely to regrow, since the root remains alive underground.The treatments are also said to be extremely pungent during application, with several workers complaining of eye irritation and one experiencing respiratory problems, DeNicola said. Those attributes have required the use of new protective equipment, something that was not required with Roundup.“It’s frustrating being out there using something labeled as organic, but you have to be out there in a bodysuit and a respirator,” he said.”

A classic example of almost-certainly unfounded fear leading to bad decision-making.

Follow The Chronicle Flask on Facebook and Twitter for regular updates and other interesting bits and pieces from around the internet.

No, ketchup does not cause cancer

ketchup and coke

Do these things really cause breast cancer? (Spoiler: no)

Less than two days into the new year, and I’d already found what might well be one of the silliest health headlines of the year. What is it I hear you ask? Well, it was in a national newspaper on New Years Day, and it was this:

Sugar found in ketchup and Coke linked to breast cancer

This, to borrow a favourite line from an online greetings card company, had me rolling my eyes so hard I could practically see my brain. Why? Because even without reading any further, I knew immediately that it was the equivalent of saying, “too much of thing found in most stuff might cause cancer!”

But let’s not be one of the 70% of users that only read the headline, let’s dig a little further. The newspaper article, which in fairness isn’t too bad – it’s just a bit of a silly headline, alludes to work carried out the University of Texas’ MD Anderson Cancer Centre. If you click on the link I’ve added back there, you’ll see that MD Anderson’s headline was:

“Sugar in Western diets increases risk for breast cancer tumors and metastasis”

Note, they just say ‘sugar’, not sugar in two apparently randomly-selected foodstuffs. The researchers divided mice into four groups, fed some a diet high in sucrose (more commonly called table sugar – in other words, the stuff in the sugar bowl) and compared them to others fed a low-sugar, ‘starch-controlled’ diet. They found that the high-sugar diet lead to increased tumour growth, particularly in mammary glands.

I’ve covered forms of sugar before but still, here’s a quick reminder before we go any further: this is a molecule of sucrose:



Sucrose is made of two ‘bits’ joined together: one unit of fructose and one unit of glucose.



These two molecules are what chemists call isomers. They contain the same number and type of atoms, just joined up differently. They’re both sugars in and of themselves. Glucose is used directly by cells in your body for energy. Fructose, on the other hand, is trickier. It has a lower glycemic index than glucose, in other words, it doesn’t raise your blood sugar as rapidly as glucose, but this doesn’t mean it’s healthier. It’s metabolised almost exclusively in the liver and, long story short, invariably ends up being converted into, and stored as, fat.



Fruit is high in fructose, and fructose tastes very sweet to us (sweeter than either glucose or sucrose). This is nature’s way of telling us, and other animals that might eat the fruit, that it’s high in nutrients. From the plant’s point of view, it’s an incentive to eat the fruit and, ahem, spread the seeds around.

Humans have, of course messed around with this perfectly sensible survival mechanism by stuffing all kinds of easily-available and not particularly nutrient-rich foods with fructose, and herein lies the problem. Co-author of the paper that started all this, Lorenzo Cohen, Ph.D., professor of Palliative, Rehabilitation, and Integrative Medicine, said “we determined that it was specifically fructose, in table sugar and high-fructose corn syrup […] which was responsible for facilitating lung metastasis and 12-HETE production in breast tumors.” Notice that he mentions fructose in table sugar; this is because, once you eat sucrose, it breaks down into units of glucose and fructose.

The article goes on to suggest that sugar-sweetened beverages are a significant problem, so was the newspaper wrong to pick on Coke? It’s a popular drink after all, and a standard can of Coca-Cola contains approximately 35 grams of sugar (which might come from either sucrose or high fructose corn syrup mainly depending on where you buy it). The guidance for adults is no more than 30 grams of sugar per day, so a single can of regular Coca-Cola would take you over that limit, and it’s very easy to drink two or even three cans without giving it a second thought.


Soft drinks and fruit juice both contain a lot of sugar

However, the same goes for pretty much any non-diet soft drink.  Pepsi, for example, has a similar amount. Lemonade can be even more sugary, with some drinks hitting 40 grams per 330 ml can. Ginger beer might well be the worst; there are 53 grams per 330 ml in Old Jamaica Ginger beer for example. Fruit juice is no better, with many juices containing 35 g of sugar per 330 ml, although at least fruit juice might contain some other nutrients such as vitamin C.

So really, I’d say it’s a bit unfair to single out Coke in a headline like this.

What about the ketchup (note they didn’t pick a specific brand here, just generic ‘ketchup’)?

Well, ketchup IS high in sugar. It contains about 24 grams of sugar per 100 grams. But hang on, 100 grams of ketchup is quite a lot. A more realistic serving size of a tablespoon is only about 15 grams, which works out at about 3.5 grams of sugar. Still quite a lot, but probably a drop in the ocean compared to all the sugar in cake, bread, drinks, fruit juice, breakfast cereals and the tubs of Roses and Quality Street you scoffed over Christmas. Unless you make a habit of drinking ketchup by the bottle (apparently some people do) this is frankly a ridiculous foodstuff to pick on.

I imagine that someone did a quick search for ‘foods that contain fructose’ and picked Coke because, well, everyone knows that Coke’s bad, right? So that sounds credible. And ketchup because we all sort of suspect it’s probably not that healthy, but it hasn’t been the subject of a health scare recently so that makes it stand out. Great clickbait, bad science.


Mice are not people

Plus, let’s be absolutely clear, the study was in mice. Mice are not people. While a study that shows an effect in mice is an interesting start, and may well be good reason to conduct more studies, quite possibly in humans, it’s not proof that this mechanism exists in humans. Humans have, after all, evolved to eat a very different diet to mice. There might well be a link, but this doesn’t prove it, and even if a link does exist we certainly can’t say anything about the significance or size of it from this research.

I’m not a dietician, but I’m going to go out on a (fairly sturdy) limb here and say that cutting back on sugar will not do you any harm and is likely to be a jolly good thing. Let’s also be clear that sugar in fruit juice, agave, honey etc is still sugar and is no healthier than table sugar. Eating too much of the sweet stuff is almost definitely bad for your waistline and, as we all learned as children, bad for your teeth too – something which is often overlooked but really shouldn’t be, poor dental health having been linked to other serious health problems including diabetes and heart disease.

ketchup on bread

Maybe cut back on the fried ketchup sandwiches

But, and here’s my big problem with the newspaper’s headline, none of this means that Coke and ketchup directly cause breast cancer which is how, I fear, some people will interpret it. Cut out sugary fizzy drinks by all means, and perhaps ditch the ketchup sandwiches (especially fried ones), but please don’t worry that the occasional dollop of red sauce is going to kill you. I’m pretty certain it won’t.

Follow The Chronicle Flask on Facebook for regular updates.

A small edit was made on 6th January to clarify that pure fructose isn’t used as an ingredient in Coke, but rather high fructose corn syrup.