Marvellous Mushroom Science

Glistening ink caps produce a dark, inky substance.

Yesterday I had the fantastic experience of a “fungi forage” with Dave Winnard from Discover the Wild, organised by Incredible Edible Oxford. There are few nicer things than wandering around beautiful Oxfordshire park- and woodland on a sunny October day, but Dave is also an incredibly knowledgeable guide. I’ve always thought mushrooms and fungi were interesting – living organisms that are neither plants nor animals and which we rely on for everything from antibiotics to soy sauce – but I had lots to learn.

Did you know, for example, that fungi form some of the largest living organisms on our planet? And that without them most of our green plants wouldn’t have evolved and probably wouldn’t be here today?

And from a practical point of view, what about the fact that people once used certain fungi to light fires? I’ve always imagined fungi as being quite wet things with a high water content (unless they’re deliberately dried, of course), but some are naturally very dry. Ötzi, the mummified man thought to have lived between 3400and 3100 BCE, was found with two types of fungus on him: birch fungus, which has antiparasitic properties, and a type of tinder fungus which can be ignited with a single spark and will smolder for days.

Coprine causes unpleasant symptoms, including nausea and vomiting, when consumed with alcohol.

Then, of course, there’s all the interesting chemistry. Early on in the day, we came across some glistening ink caps.The gills of these disintegrate to produce a black, inky liquid which contains a form of melanin and can be used as ink. And there’s more to this story: as I’ve already mentioned, fungi are not plants and they can’t photosynthesise, but it seems that some fungi do use melanin to harness gamma rays as energy for growth. Extra mushrooms for the Hulk’s breakfast, then?

Moving away from pigments for a moment, a related species to the glistening ink cap, the common ink cap, contains a chemical called coprine. This causes lots of unpleasant symptoms if it’s consumed with alcohol, similar to Disulfiram, the drug used to treat alcoholism. For this reason one of this mushroom’s other names is tippler’s bane. The coprine in the mushrooms effectively causes an instant hangover by accelerating the formation of acetaldehyde (also known as ethanal) from alcohol. Definitely don’t pair that mushroom omelette with a nice bottle of red and, worse, you’ll need to stay off the booze for a while: apparently the effects can linger for a full three days.

Yellow stainer mushrooms look like field mushrooms, but are poisonous.

We also came across some yellow stainer mushrooms. These look a lot like field mushrooms, but be careful – they aren’t edible. They cause nasty gastric sympoms and are reportedly responsible for most cases of mushroom poisoning in this country, although some people seem to be able to eat them without ill effect. They had a slightly chemically scent that reminded me “new trainer” smell – sort of rubbery and plasticky. It’s often described as phenolic, but I have to say I didn’t detect that myself – although yellow stainers have been shown to contain phenol and this could account for their poisonous nature. Anyway, it was an aroma that wouldn’t be entirely unpleasant if I were opening a new shoebox, but it wasn’t something I’d really want to eat. Apparently the smell gets stronger as you cook them, so don’t ignore what your nose is telling you if you think you have a nice pan of field mushrooms.

4,4′-Dimethoxyazobenzene is an azo dye.

The real giveaway with yellow stainers, though, is their tendency to turn yellow when bruised or scratched, hence the name. This, it seems, is due to 4,4′-dimethoxyazobenzene. The name might not be familiar, but A-level Chemistry students will recognise the structure: it’s an azo-dye. Quite apart from being a very useful word in Scrabble, azo compounds are well-known for their characteristic orange/yellow colours. It’s not really clear whether it forms in the mushroom due to some sort of oxidation reaction, or whether it’s in the cells anyway but only becomes visible when the cells are damaged. Either way, it’s something to look out for if you spot a patch of what look like field mushrooms.

The blushing wood mushroom.

We also came across several species which are safe to eat. One I might look out for in future is the blushing wood mushroom. As is often the way with fungi, the name is literal rather than merely poetic. These mushrooms have a light brown cap, beige gills, and a pale stem, but they turn bright red when cut or scratched due to the formation of an ortho-quinone. It’s quite a dramatic colour-change, and makes them pretty easy to identify. Apparently they’re normally uncommon here, but we found quite a lot of them, which might be something to do with this year’s unusally hot and dry summer.

Red ortho-quinone causes blushing wood mushrooms to literally blush.

I tried to find out the reasons for these colour-changes. In the plant and animal kingdoms pigments are usually there for good reason: camouflage, signalling and communication or, as with chlorophyll, as a way of making other substances. Fruits, for example, often turn bright red as they ripen because it makes them stand out from the green foilage and encourages animals to eat them so that the seeds can be spread. Likewise, they’re green when they’re unripe because it makes them less obvious and less appealing. But what’s the advantage for the mushroom to change colour once it’s already damaged? Perhaps there isn’t one, and it’s just an accident of their biology, but if so it seems strange that it’s a feature of several species. I couldn’t find the answer; if any mycologists are reading this and know, get in touch!

Velvet shank mushrooms.

Other edible species we met were fairy ring champignons, field blewits and jelly ear fungus – which literally looks like a sort of transparent ear. I’ll definitely be looking out for all of these in the future, but it’s important to watch out for dangerous lookalikes. Funeral bell mushrooms, for example, look like the velvet shank mushrooms we found but, once again, the name is quite literal – funeral bells contain amatoxins and eating them can cause kidney and liver failure. As Dave was keen to remind us: never eat anything you can’t confidently name!


Like the Chronicle Flask’s Facebook page for regular updates, or follow @chronicleflask on Twitter. Content is © Kat Day 2018. You may share or link to anything here, but you must reference this site if you do.

If you enjoy reading my blog, please consider buying me a coffee through Ko-fi using the button below.
Buy Me a Coffee at ko-fi.com

Advertisements

Should you be scared of your shampoo?

I was doing some grocery shopping online recently (I have small children, I’ve started to view traditional supermarket shopping in the same way as beating my carpets with a stick and washing clothes in a stream) when I came across some reviews for a particular brand of shampoo.

Most of the reviews were positive, but some were not. In particular, there were a few one star ones complaining about ingredients called methylchloroisothiazolinone and methylisothiazolinone.

273px-Methylchloroisothiazolinone_structure.svg

methylchloroisothiazolinone

What, you may be wondering, are these monstrosities? Surely with names that long they must be huge great big molecules? Actually no, they’re quite small. Methylchloroisothiazolinone (shown in the graphic) has a mere four carbon atoms and an interesting assortment of other elements. They’re part of a group of compounds called isothiazolinones, which are heterocyclic molecules that include a five-membered ring which contains nitrogen, sulfur and a C=O group.

Not surprisingly considering the unwieldy name, methylchloroisothiazolinone is often shortened to MCI. Likewise, the chemically-similar methylisothiazolinone (imagine the molecule above without the -Cl bit) goes by the moniker MI, or sometimes MIT.

MCl and MI are common preservatives in cosmetic products

MCl and MI are common preservatives in cosmetic products.

Why are these things in shampoo? Well, they are very effective preservatives. They’re antibacterial and antifungal, and work against both gram-positive and gram-negative bacteria, as well as yeast and fungi. This is a good thing, because some of these microbes are pretty nasty. The bacteria, for example, include such lovelies as Nocardia (associated with a particular type of respiratory disease), Staphylococcus (associated with various infections) and Listeria (most famous for causing gastrointestinal distress). It may be a small risk, but showers are warm, moist environments – basically the perfect breeding ground for these sorts of things. If these microbes start growing in your shampoo, shower gel and so on, they would then end up on your hair and skin, possibly be inhaled, and might even make their way into your bloodstream if you had a small cut somewhere.

Yuck.

So, that’s why these chemicals are there. That all sounds good, right? Why are people complaining?

The dose makes the poison is an important principle in toxicology (image credit: Lindsay Labahn, click for link)

The dose makes the poison is an important principle in toxicology (image credit: Lindsay Labahn, click for link)

Well, because they also have their hazards. Now, before I go any further, we should remember a very important principle of toxicology, which is that “the dose makes the poison“. Everything, I really mean EVERYTHING, is dangerous if you’re exposed to too much of it. Oxygen is quite crucial if you want to carry on living, for example, but breathe in too much of it for too long and you’re at risk of developing visual disturbances, tinnitus, nausea and muscle spasms. Too much could even be lethal. Similarly, a pinch of salt is quite nice on chips, but try and drink say, seawater, and you’ll soon regret it. Even plain water can be dangerous if you consume too much in too short a time, particularly if you’re also exercising hard.

Many chemicals that are used industrially have scary lists of associated hazards, but it’s important to remember that these warnings are usually aimed at people who use said chemical in an industrial setting. In other words, they might be handling kilograms or even tonnes of the stuff, all day every day, as opposed to the teeny tiny quantity you’re likely to meet a few times a week.

I could pick literally any ingredient in that shampoo bottle and proclaim that it’s dangerous. This would be perfectly true, but also meaningless. A more pertinent question is: is it dangerous in the quantity that you usually use?

Are methylchloroisothiazolinone and methylisothiazolinone in shampoo dangerous? There’s no evidence that they bioaccumulate (build up in the body) or that they’re linked to any kind of cancer (phew). In 2002, there was an in vitro (i.e. outside of living organisms) study of the neurotoxicity of MI which showed that mature neurons in tissue culture could be killed by 4-12 ppm solutions of the chemical. But these experiments were performed on rat brain cells in culture. Lots of things will damage cells in a petri dish: it doesn’t mean that we necessarily have to worry about them in every day life. A shampoo solution pouring straight into your brain might well be harmful, but I suggest that if that’s happening in the shower you have bigger problems. Namely, major head trauma.

However, in high concentrations, MI and MCl are definitely skin and membrane irritants, which can cause chemical burns. They’re known chemical ‘sensitisers‘. This means that exposure to them, even at fairly low levels, might cause an allergic reaction.

6575860-3x2-940x627

A patient who presented to a medical centre following a severe reaction to methylisothiazolinone in a wipe (SA Government – click image for source).

This is where we get into difficult territory, because exactly how a particular individual is going to respond to something like this can be hard to predict. For example, I’ve never had a nasty reaction to methylchloroisothiazolinone. Give me an aspirin, on the other hand, and I’m likely to be in trouble. Allergies are specific to individuals. But there is no doubt that some people do have nasty reactions to MCI and MI; some sources have suggested it might be as many as 15% of the population (and that this number might, worryingly, have increased in recent years).

These chemicals are, or at least have been, also used as preservatives in other products such as sunscreens, moisturisers and wipes (baby wipes, facial wipes and moist toilet tissue, for example), which is a particular concern because you don’t wash off the the residue from these products – that generally being the point of using them – so it lingers on the skin.

A 2014 report from the International Journal of Toxicology concluded that although MI and MCI are sensitisers at concentrations of 50 ppm and above, they weren’t at concentrations of 15 ppm (and below). And therefore they, “may be safely used in ‘rinse-off’ products at a concentration not to exceed 15 ppm and in ‘leave-on’ cosmetic products at a concentration not to exceed 7.5 ppm”.

However, also in 2014, the European Commission Scientific Committee on Consumer Safety argued that: “For leave-on cosmetic products (including ‘wet wipes’), no safe concentrations of MI for induction of contact allergy or elicitation have been adequately demonstrated.”

People have been particularly worried about children, especially with respect to baby wipes. This is not unreasonable, since not only is the contact dermatitis that can occur painful and unpleasant, but once sensitisation has occurred it can’t be reversed: anyone affected will have to read labels extremely carefully for ever after. As a result, consumer groups have campaigned to have MI and MCI removed from any product that’s left on the skin over the last few years.

I happen to have three different brands of baby wipes in my house at the moment (small children you see), and a quick glance at the ingredients tells me that MI and MCI aren’t in any of them, and nor are they ingredients in the packet of flushable moist toilet tissue in the bathroom. This is hardly a comprehensive survey of course, but it suggests that these substances might be falling out of favour. Big companies aren’t really out to get us: pictures of people with nasty skin lesions after using their products doesn’t do them any favours.

Some consumers have complained about the use of MI and MCl in products.

Some consumers have complained about the inclusion of MI and MCl in products.

Do you really need to worry? Were these consumers right to highlight the fact that the shampoo contains MI and MCI in their reviews? Well, if you know you have sensitive skin then these substances probably are best avoided. But is shampoo likely to cause sensitisation if you’re fortunate enough to be blessed with the sort of skin that generally doesn’t erupt into a rash if the wind so much as changes? No one can say for certain, but it seems unlikely because you wash it off: these substances are only in contact with your skin for a few seconds.

So, whilst it doesn’t hurt to be aware of such things, there’s probably no need to panic and throw out all your shampoo just in case. On the other hand, if you’ve been wondering why your skin seems to be permanently irritated, it might be worth checking a few ingredients labels.

Follow The Chronicle Flask on Facebook and @chronicleflask on Twitter for regular updates.