Chemical catastrophes – who were the biggest baddies of chemistry’s past?

As a big fan of chemistry I like to encourage students to believe that it will be a huge force for good in the future, providing us with solutions to problems such as sustainable energy, currently incurable diseases and new materials.  And I hope I’m right about this.  But there’s no escaping the fact that chemistry has a dark, dirty and dangerous past.  In the days before health and safety – oh we take the mickey, but trust me you wouldn’t actually want to be without it – proper regulations and rigorous testing, chemists threw dangerous chemicals around like sweeties.  Quite literally in some cases.  They tasted and smelled toxic and dangerous substances and, worse, they released them on an unsuspecting population with barely a second thought.

baddySo with that in mind, who are my top three biggest baddies of chemistry’s past?

Fritz Haber (1868 – 1934)
The German chemist Fritz Haber gets the number three slot.  In some ways, he’s a bit of double-edged sword.  He did good along with the bad, inventing – along with Carl Bosch – the Haber Bosch process for making ammonia.  No matter what your feelings about inorganic fertilisers, we have to accept that without them we wouldn’t be able to feed the population of this country, let alone the world.  There just isn’t that much pooh out there.  Some people would argue that the population rise Haber’s process facilitated has been a disaster in itself.  But this is to conveniently forget that, had he not developed it, they probably wouldn’t be here to complain about it.

Haber wasn’t entirely a misunderstood genius though.  He’s also been described as the father of chemical warfare for his work on the use of chlorine and other poisonous gases during World War I.  His work included the development of gas mask filters, but he also led teams developing deadly chlorine gas used in trench warfare.  He was even there to supervise its release.  He was a patriotic German and believed he was doing the right thing, supporting his country in the war effort.  During the second world war Haber’s skills were initially sought out by the Nazis, who offered him special funding to continue his work on weapons.  However Haber was Jewish, so in common with other scientists in a similar position he ended up leaving Germany in 1933.

Famously, Haber’s first wife disagreed vehemently with his work on chemical warfare.  In fact, perhaps unable to cope with the fact that he had personally overseen the successful use of chlorine in 1915, she committed suicide by shooting herself with his service revolver.  That same morning, Haber left again to oversee gas release against the Russians, leaving behind his grieving 13 year-old son.

Haber was awarded the Nobel prize for Chemistry in 1919 for his work on the Haber Process.  So the story goes, other scientists at the ceremony refused to shake his hand in protest at his work with chemical weapons.  A tragic story all round.

Carl Wilhelm Scheele (1742 – 1786)
We’ve seen Scheele’s name come up before of course.  In his short – thanks to his bad habit of tasting and sniffing toxic chemicals – life he made a lot of chemical discoveries, but didn’t get the recognition for many of them because he always seemed to publish after someone else.  The ones he is remembered for always seem to be the horribly dangerous ones (maybe no one else wanted the credit).  For example he discovered hydrogen cyanide (a poison beloved of many an Agatha Christie villain, hydrogen fluoride (a highly toxic gas that forms the incredibly dangerous hydrofluoric acid when dissolved in water) and hydrogen sulfide (toxic, highly flammable and stinks of rotten eggs).

But his most harmful contribution to the world was undoubtedly Scheele’s Green, the arsenic-based yellow-green dye that was used to colour fabrics, paints, candles, toys and even, most tragically of all, foodstuffs in the 1800s.  It’s impossible to count but it was undoubtably responsible, directly and indirectly, for huge numbers of deaths in the 19th century.  Essentially he invented a deadly poison that ended up in thousands of homes all around the world.  Aren’t you glad we have safety testing these days?

Thomas Midgely (1889-1944)
Who was worse, Scheele or Midgely?  It’s a tough call, but I think Midgely takes it, particularly because he had some inkling exactly how damaging at least some of his work might turn out to be.

Midgely is famously responsible for synthesising the first CFC, freon.  CFCs, or chlorofluorocarbons, are neither toxic nor flammable, so were considered much safer than other propellants and refrigerants used at the time.  In fact, he was even awarded the Perkin Medal in 1937 for his work.  This, of course, was some time before the terrible consequences of CFCs were realised.  As we now know, they turned out to very damaging to the ozone layer, and in 1989 twelve European Community nations agreed to ban their production, and they have since been phased out across the world.

Although CFCs were a disaster, Midgely could at least be defended for having no way of knowing how disastrous they would ultimately turn out to be.  Not so for his other famous invention.  Whilst working at General Motors he discovered that adding tetraethyllead, or TEL, to petrol (aka gasoline) prevented ‘knocking‘ in internal combustion engines, which is when the air/fuel mixture ignites at slightly the wrong time.  Knocking makes the engine much less efficient, and so preventing it was a big issue.  You’d think Midgely might have accepted that lead in petrol was a bad idea when he had to take a vacation to recover from severe lead poisoning, but no.  In fact he appeared to have been pretty cynical about the whole thing, pouring TEL over his hands at a press conference in 1924 to demonstrate its apparent safety (its not, and he had to take more time off afterwards to recover).

Unfortunately burning fuel with TEL in it disperses lead into the air where it’s readily inhaled by innocent bystanders, and it’s particularly harmful to children.  Lead exposure has been linked to low IQ and antisocial behaviour, and recently researchers suggested that the ban on leaded petrol across the world in the early 2000s might now be leading to a reduced crime rate.

So for knowingly poisoning people worldwide with lead, and unknowingly taking out a chunk of the ozone layer, Midgely gets my award as biggest chemical baddy.

Would you pick someone else?

Why is chemistry the forgotten science?

I recently had the privilege of talking to radio DJ and author Simon Mayo and he asked me what I thought of his book, Itch.  I said I loved it, and I really do.  (I have yet to read the sequel, Itch Rocks – released at the end of February – but it’s definitely on my list.)  I like Itch for many reasons.  I liked it because the lead character is a teenage boy who’s interested in science and actually finds arty subjects rather difficult, and yet is not a nerdy stereotype.  I like it because there was lots of action and an interesting story, coupled with just the right amount of research.  I liked it because the main female character is strong-willed, principled and absolutely doesn’t get involved in any sort of love triangle (this is not, to paraphrase my favourite film, ‘a kissing book’).  And most of all, I like it because it’s science fiction about chemistry.chemistry

As a chemist, it’s long seemed to me that, when it comes to the media and fiction, it’s the forgotten science. I can think of any number of famous science fiction works that hinge around physics and astronomy.  I can think of things based on biology.  I can even recall one or two that have both, for example Christian Cantrell’s Containment, a novel about a brilliant young scientist living on Venus and working on artificial photosynthesis.  But when it comes to chemistry I’m struggling.  Poisoning turns up in quite a few murder mysteries of course, as does forensics.  I suppose you could argue that some of the medical thrillers with plots that hinge around drugs might count.   Nanotechnology, as in Prey by Michael Crichton, is often thought of as a chemical field in the real world (TM), but thrillers on the subject tend to be less about matter on the atomic scale and more about improbably aggressive tiny robots.

It’s not just fiction.  In recent years there has been a noticeable increase in the amount of science programming, particularly on the BBC.  This is fabulous, but the large majority has been focused on physics and biology.  Radio 4’s The Infinite Monkey Cage often takes great glee in ignoring, and even ridiculing, chemical disciplines (I still listen to it mind you, in the manner of someone poking at a sore tooth).  The current run of BBC’s Horizon has exactly one episode (The Truth about Taste) that might be considered to have a chemistry focus.  At the end of last year Dara O Briain’s Science Club managed a whole series of six episodes without a single one on a chemical topic.  And so on and so on.  At least the most recent Royal Institution Christmas Lectures redressed the balance a bit, even if they were tucked away on BBC Four.  And as I posted recently, the quiz show Pointless seems to be quite fond of chemistry as a topic, so that’s something.

But why the general lack of chemistry?  Especially when you consider that the A-level is not only desirable but an essential requirement for so many degrees, including medicine, veterinary science, dentistry and pharmacy.  Whereas physics and, perhaps more surprisingly, biology aren’t. Since it’s so important you’d imagine there would be a bit more enthusiasm for the subject.

Is it linked to the background of the presenters?  Dara O Briain, in a previous life, studied mathematics and theoretical physics.  Professor Brian Cox, presenter of the Infinite Monkey Cage, is of course a physicist.  The only regular presenter I can think of with anything resembling a chemistry degree (actually biochemistry) is Liz Bonnin of Bang Goes the Theory.  But surely it isn’t impossible to find a chemist capable of presenting?  Peter Wothers did a cracking job with the Royal Institution lectures for starters.  And surely, surely, there’s room for the fabulously eccentric-looking Martyn Poliakoff somewhere?  (Please go and look at The Periodic Table of Videos if you have five minutes – it’s brilliant.)

But I’m not sure that’s the problem.  I imagine presenters largely talk about what they’re told to talk about.  No, I fear it might be simply the fact that chemistry is a bit, well, hard.

Early in my teaching career an exasperated A-level student complained, “miss, I thought chemistry was all setting fire to things and explosions and stuff, but it’s mostly just numbers and symbols”.  I’m afraid there’s some truth to this, particularly by the time we get to A-level chemistry, although I do like to set fire to things wherever possible (in a controlled manner of course – I’m not an arsonist, I swear).

I often joke with students that chemists use equations because we’re lazy.  For example, take this very simple experiment that you probably do every day if you have a gas cooker – it’s what happens when you set fire to methane:

CH4 + 2O2 –> CO2 + 2H2O

Now let’s write that in words: One molecule of methane, which contains one carbon atom bonded to four hydrogen atoms, reacts with exactly two molecules of diatomic oxygen irreversibly to produce exactly one molecule of carbon dioxide, which contains one atom of carbon bonded to two oxygen atoms, and two molecules of water, which contains two atoms of hydrogen bonded to an oxygen atom. 

Phew.  You can see why chemists prefer the equation.  Imagine if we had to write something like that every time we wanted to describe a reaction?  We’d never get anywhere.  Plus, once you understand them, the equations allow you to see similarities between different reactions that could be easily missed otherwise.  The symbols are essential.  But they’re also a bit, well, impenetrable.  A TV show with lots of chemical symbols would be as impossible to understand as one presented in French for many, and rather more difficult to subtitle.

So yes, it can look a bit scary.  But it’s not impossible.  After all you need advanced mathematics to understand physics in depth, but plenty of physics programmes explain their subject matter without even hinting at the dreaded doublet of differentiation and integration.  A good chemist can make the subject accessible with a bit of creativity.

It’s not as if there’s not lots of interesting material (pun entirely intended).  Chemistry is the science behind explosives, cooking, medicines, bubbles, pigments and poisons.  It has a fascinating history, populated with characters such as Fritz Haber, the father of chemical warfare who also solved the problem of global food security, Glenn Seaborg who discovered ten (ten!) of those elements that loiter at the bottom of the periodic table, Henry Cavendish – discoverer of hydrogen and famously so shy he was unable to talk to women, Antoine Lavoisier, tax collector, traitor and the person who named both oxygen and hydrogen and let’s not forget Carl Wilhelm Scheele, discoverer of some of the most dangerous substances known to man.  There are endless stories that could be told, from the legal case of the Carbolic Smoke Ball to Kekule’s dreams of snakes eating their own tails, to bizarre medical practices such as antimony pills and the mystery of the Bradford Sweets poisoning.

If Simon Mayo can write a series of highly successful novels featuring chemistry aimed at young adults, it must surely be possible to make a few more shows on the topic.  So writers, editors and producters I beseech you not to be scared of chemistry.  Find yourself someone with a bit of knowledge in the area and get on with it.  For whatever chemistry is, it’s far from boring.

Do you know of any chemistry science fiction I’ve missed?  Have you got any favourite chemical stories that you think should be on telly?  Please tell me about them!