Chemical du jour: how bad is BPA, really?

BPA is an additive in many plastics

When I was writing my summary of 2017 I said that there would, very probably, be some sort of food health scare at the start of 2018. It’s the natural order of things: first we eat and drink the calorie requirement of a small blue whale over Christmas and New Year, and then, lo, we must be made to suffer the guilt in January. By Easter, of course, it’s all forgotten and we can cheerfully stuff ourselves with chocolate eggs.

Last year it was crispy potatoes, and the year before that it was something ridiculous about sugar in ketchup causing cancer (it’s the same sugar that’s in everything, why ketchup? Why?). This year, though, it seems that the nasty chemical of the day is not something that’s in our food so much as around it.

Because this year the villain of the piece appears to be BPA, otherwise known as Bisphenol A or, to give it its IUPAC name, 4,4′-(propane-2,2-diyl)diphenol.

BPA is an additive in plastics. At the end of last year an excellent documentary aired on the BBC called Blue Planet II, all about our planet’s oceans. It featured amazing, jaw-dropping footage of wildlife. It also featured some extremely shocking images of plastic waste, and the harm it causes.

Plastic waste is a serious problem

Plastic waste, particularly plastic waste which is improperly disposed of and consequently ends up in the wrong place, is indisputably something that needs to be addressed. But this highlighting of the plastic waste problem had an unintended consequence: where was the story going to go? Everyone is writing about how plastic is bad, went (I imagine) editorial meetings in offices around the country – find me a story showing that plastic is even WORSE than we thought!

Really, it was inevitable that a ‘not only is plastic bad for the environment, but it’s bad for you, too!’ theme was going to emerge. It started, sort of, with a headline in The Sun newspaper: “Shopping receipts could ‘increase your cancer risk’ – as 93% contain dangerous chemicals also linked to infertility. Shopping receipts are, of course, not made of plastic – but the article’s sub-heading stated that “BPA is used to make plastics”, so the implication was clear enough.

Then the rather confusing: “Plastic chemical linked to male infertility in majority of teenagers, study suggests” appeared in The Telegraph (more on this in a bit), and the whole thing exploded. Search for BPA in Google News now and there is everything from “5 Ways to Reduce Your Exposure to Toxic BPA” to “gender-bending chemicals found in plastic and linked to breast and prostate cancer are found in 86% of teenagers”.

Yikes. It’s all quite scary. It’s true that right now you can’t really avoid plastic. Look around you and it’s likely that you’ll immediately see lots of plastic objects, and that’s before you even try to consider all the everyday things which have plastic coatings that aren’t immediately obvious. If you have young children, you’re probably drowning in plastic toys, cups, plates and bottles. We’re pretty much touching plastic continually throughout our day. How concerned should we be?

As the Hitchiker’s Guide to the Galaxy says, Don’t Panic. Plastic (like planet Earth in the Guide) can probably be summed up as mostly harmless, at least from a BPA point of view if not an environmental one.

BPA is a rather pleasingly symmetrical molecule with two phenol groups. (A big model of this would make a wonderfully ironic pair of sunglasses, wouldn’t it?) It was first synthesized by the Russian chemist Alexander Dianin in the late 19th century. It’s made by reacting acetone – which is where the “A” in the name comes from – with two phenol molecules. It’s actually a very simple reaction, although the product does need to be carefully purified, since large amounts of phenol are used to ensure a good yield.

It’s been used commercially since the fifties, and millions of tonnes of BPA are now produced worldwide each year. BPA is used to make plastics which are clear and tough – two characteristics which are often valued, especially for things like waterproof coatings, bottles and food containers.

The concern is that BPA is an endocrine disruptor, meaning that it interferes with hormone systems. In particular, it’s a known xenoestrogen, in other words it mimics the female hormone estrogen. Animal studies have suggested possible links to certain cancers, infertility, neurological problems and other diseases. A lot of the work is fairly small-scale and, as I’ve mentioned, focused on animal studies (rather than looking directly at effects in humans). Where humans have been studied it’s usually been populations that are exposed to especially high BPA levels (epoxy resin painters, for example). Still, it builds up into quite a damning picture.

BPA has been banned from baby bottles in many countries, including the USA and Europe

Of course, we don’t normally eat plastic, but BPA can leach from the plastic into the food or drink that’s in the plastic, and much more so if the plastic is heated. Because of these concerns, BPA has been banned from baby bottles (which tend to be heated, both for sterilisation and to warm the milk) in several countries, including the whole of Europe, for some years now. “BPA free” labels are a fairly common sight on baby products these days. BPA might also get onto our skin from, for example, those thermal paper receipts The Sun article mentioned, and then into our mouths when we eat. Our bodies break down and excrete the chemical fairly quickly, in as little as 6 hours, but because it’s so common in our environment most of us are continually meeting new sources of it.

How much are we getting, though? This is a critical question, because as I’m forever saying, the dose makes the poison. Arsenic is a deadly poison at high levels, but most of us – were we to undergo some sort of very sensitive test – would probably find we have traces of it in our systems, because it’s a naturally-occuring mineral. It’s nothing to worry about, unless for some reason the levels become too high.

When it comes to BPA, different countries have different guidelines. The European Food Safety Authority recommended in January 2015 that the TDI (tolerable daily intake) should be reduced from 50 to 4 µg/kg body weight/day (there are plans for a new assessment in 2018, so it might change again). For a 75 kg adult, that translates to about 0.0003 g per day. A USA Federal Drug and Administration document from 2014 suggests a NOAEL (no-observed-adverse-effect-level) of 5 mg/kg bw/day, which translates to 0.375 g per day for the same 75 kg adult. NOAEL values are usually much higher than TDIs, so these two figures aren’t as incompatible as they might appear. Tolerable daily intake values tend to have a lot of additional “just in case” tossed into them – being rather more guidance than science.

The European Food Standards Authority published a detailed review of the evidence in 2015 (click for a summary)

So, how much BPA are we exposed to? I’m going to stick to Europe, because that’s where I’m based (for now…), and trying to look at all the different countries is horribly complicated. Besides, EFSA produced a really helpful executive summary of their findings in 2015, which makes it much easier to find the pertinent information.

The key points are these: most of our exposure comes from food. Infants, children and adolescents have the highest dietary exposures to BPA, probably because they eat and drink more per kilogram of body weight. The estimated average was 0.375 µg/kg bw per day.  For adult women the estimated average was 0.132 µg/kg bw per day, and for men it was 0.126 µg/kg bw per day.

When it came to thermal paper and other non-dietary exposure (mostly from dust, toys and cosmetics), the numbers were smaller, but the panel admitted there was a fair bit of uncertainty here. The total exposure from all sources was somewhere in the region of 1 µg/kg bw per day for all the age groups, with adolescents and young children edging more toward values of 1.5 µg/kg bw per day (this will be important in a minute).

Note that all of these numbers are significantly less than the, conservative, tolerable daily intake value of 4 µg/kg bw per day recommended by EFSA.

Here’s the important bit: the panel concluded that there is “no health concern for BPA at the estimated levels of exposure” as far as diet goes. They also said that this applied “to prenatally exposed children” (in other words, one less thing for pregnant women to worry about).

When it came to total exposure, i.e. diet and exposure from other sources such as thermal paper they concluded that “the health concern for BPA is low at the estimated levels of exposure”.

The factsheet that was published alongside the full document summarises the results as follows: “BPA poses no health risk to consumers because current exposure to the chemical is too low to cause harm.”

Like I said: Don’t Panic.

What about those frankly quite terrifying headlines? Well, firstly The Sun article was based on some work conducted on a grand total of 208 receipts collected in Southeast Michigan in the USA from only 39 unique business locations. That’s a pretty small sample and not, I’d suggest, perhaps terribly relevant to the readership of a British newspaper. Worse, the actual levels of BPA weren’t measured in the large majority of samples – they only tested to see if it was there, not how much was there. There was nothing conclusive at all to suggest that the levels in the receipts might be enough to “increase your cancer risk”. All in all, it was pretty meaningless. We already knew there was BPA in thermal receipt paper – no one was hiding that information (it’s literally in the second paragraph of the Wikipedia page on BPA).

The Telegraph article, and the many others it appeared to spawn, also weren’t based on especially rigorous work and, worse, totally misrepresented the findings in any case. Firstly, let’s consider that headline: “Plastic chemical linked to male infertility in majority of teenagers, study suggests”. What does that mean? Are they suggesting that teenagers are displaying infertility? No, of course not. They didn’t want to put “BPA” in the headline because that, apparently, would be too confusing for their readers. So instead they’ve replaced “BPA” with “plastic chemical linked to male infertility”, which is so much more straightforward, isn’t it?

And they don’t mean it’s linked to infertility in the majority of teenagers, they mean it’s linked to infertility and it’s in the majority of teenager’s bodies. I do appreciate that journalists rarely write headlines – this isn’t a criticism of the poor writer who turned in perfectly good copy – but that is confusing and misleading headline-writing of the highest order. Ugh.

Plus, as I commented back there, that wasn’t even the conclusion of the study, which was actually an experiment carried out by students under the supervision of a local university. The key finding was not that, horror, teenagers have BPA in their bodies. The researchers assumed that almost all of the teenagers would have BPA in their bodies – as the EFSA report showed, most people do. No, the conclusion was actually that the teenagers – 94 of them – had been unable to significantly reduce their levels of BPA by changing their diet and lifestyle. Although the paper admits the conditions weren’t well-controlled. Basically, they asked a group of 17-19 year-olds to avoid plastic, and worked on the basis that their account of doing so was accurate.

And how much did the teenagers have in their samples? The average was 1.22 ng/ml, in urine samples (ng = nanogram). Now, even if we assume that these levels apply to all human tissue (which they almost certainly don’t) and that therefore the students had roughly 1.22 ng per gram of body weight, that only translates to, very approximately, 1.22 micrograms (µg) per kilogram of body weight.

Wait a second… what did EFSA say again…. ah yes, they estimated total exposures of 1.449 µg/kg bw per day for adolescents.

Sooooo basically a very similar value, then? And the EFSA, after looking at multiple studies in painstaking detail, concluded that “BPA poses no health risk to consumers”.

Is this grounds for multiple hysterical, fear-mongering headlines? I really don’t think it is.

It is interesting that the teenagers were unable to reduce their BPA levels. Because it’s broken down and excreted quite quickly by the body, you might expect that reducing exposure would have a bigger effect – but really all we can say here is that this needs to be repeated with far more tightly-controlled conditions. Who knows what the students did, and didn’t, actually handle and eat. Perhaps their school environment contains high levels of BPA in dust for some reason (new buildings or equipment, maybe?), and so it was virtually impossible to avoid. Who knows.

In summary, despite the scary headlines there really is no need to worry too much about BPA from plastics or receipts. It may be worth avoiding heating plastic, since we know that increases the amound of BPA that makes its way into food – although it’s important to stress that there’s no evidence that microwaving plastic containers causes levels to be above safe limits. Still, if you wanted to be cautious you could choose to put food into a ceramic or glass bowl, covered with a plate rather than clingfilm. It’ll save you money on your clingfilm bills anyway, and it means less plastic waste, which is no bad thing.

Roll on Easter…


Like the Chronicle Flask’s Facebook page for regular updates, or follow @chronicleflask on Twitter. All content is © Kat Day 2018. You may share or link to anything here, but you must reference this site if you do.


All comments are moderated. Abusive comments will be deleted, as will any comments referring to posts on this site which have had comments disabled.

Advertisements

In the fridge or on the windowsill: where’s the best place to keep tomatoes?

Fresh fruit and vegetables are great, but where’s the best place to store them?

I’ve mentioned before that my Dad is a professional plant-wrangler (if you’ve never read the electric daisies post, do go and have a look – it’s a little-read favourite) and he often brings me home-grown fruit and vegetables.

What follows is an inevitable disagreement about storage, specifically, my habit of putting everything in the fridge.

In my defence, modern houses rarely have pantries (boo) and we don’t even have a garage. We do have a shed, but it’s at the bottom of our poorly-lit, somewhat muddy garden. Do I want to traipse out there on a cold, dark, autumn evening? No, I do not. So the fabled “cool, dark place” is a bit of problem. My fridge is cool and dark, I have argued, but here’s the thing – turns out, it’s too cool. And quite probably too dark.

This I have learned from the botanist James Wong (@botanygeek on Twitter), whose talk I attended on Monday this week at the Mathematical Institute in Oxford. James, it turns out, had a rather similar argument with his Mum, particularly regarding tomatoes.

We should’ve listened to out parents, because they were right. A lot of fruit and vegetables really are better stored outside of the fridge, and for tomatoes in particular “better” actually means “more nutritious”.

Lycopene is a very long molecule with lots of double C=C bonds.

Tomatoes, James explained, contain a lot of a chemical called lycopene. It’s a carotene pigment, and it’s what gives tomatoes their red colour.

Lycopene has lots of double bonds between its carbon atoms which form something chemists call a conjugated system. This has some rather cool properties, one of which is an ability to absorb certain wavelengths of light. Lycopene is especially good at absorbing blue and green wavelengths, leaving our eyes to detect the red light that’s left.

Lycopene absorbs blue and green light, which is why tomatoes appear red.

Tomatoes and lycopene also seem to have a lot of health benefits. There’s some evidence that lycopene might reduce the risk of prostate and other cancers. It also appears to reduce the risk of stroke, and eating tomato concentrate might even help to protect your skin from sun damage (don’t get any ideas, you still need sunblock). Admittedly the evidence is currently a bit shaky – it’s a case of “more research is needed” – but even if it turns out to that the causative relationship isn’t terribly strong, tomatoes are still a really good source of fibre and vitamins A, C and E. Plus, you know, they taste yummy!

But back to the fridge. Surely they will keep longer in the fridge, and the low temperatures will help to preserve the nutrients? Isn’t that how it works?

Well, no. As James explained, once tomatoes are severed from the plant they have exactly one purpose: to get eaten. The reason, from the plant’s point of view, is that the critter which eats them will hopefully wander off and – ahem – eliminate the tomato seeds at a later time, somewhere away from the parent plant. This spreads the seeds far and wide, allowing little baby tomato plants to grow in a nice, open space with lots of water and sun.

For this reason once the tomato fruit falls, or is cut, from the tomato plant it doesn’t just sit there doing nothing. No, it carries on producing lycopene. Or rather, it does if the temperature is above about 10 oC. Below that temperature (as in a fridge), everything more or less stops. But, leave a tomato at room temperature and lycopene levels increase significantly. Plus, the tomato pumps out extra volatile compounds – both as an insect repellant and to attract animals which might usefully eat it – which means… yes: room temperature tomatoes really do smell better. As if that weren’t enough, chilling tomatoes can damage cell membranes, which can actually cause them to spoil more quickly.

In summary, not only will tomatoes last longer out of the fridge, they will actually contain more healthy lycopene!

Anecdotally, once I got over my scepticism and actually started leaving my tomatoes on my windowsill (after years of refrigeration) I discovered that it’s true. My windowsill tomatoes really do seem to last longer than they used to in the fridge, and they almost never go mouldy. Of course, it’s possible that I might not be comparing like for like (who knows what variety of tomato I bought last year compared to this week), but I urge you to try it for yourself.

James mentioned lots of other interesting bits and pieces in his talk. Did you know that sun-dried shiitake mushrooms are much higher in vitamin D? Or that you can double the amount of flavonoid you absorb from your blueberries by cooking them? (Take that, raw food people!) Storing apples on your windowsill is likely to increase the amount of healthy polyphenols in their skin, red peppers are better for you than green ones, adding mustard to cooked broccoli makes it more nutritious, and it would be much better if we bought our butternut squash in the autumn and saved it for Christmas – it becomes sweeter and more flavoursome over time.

In short, fascinating. Who wants to listen to some “clean eater” making it up as they go along when you can listen to a fully-qualified botanist who really knows what he’s talking about? Do check out the book, How to Eat Better, by James Wong – it’s packed full of brilliant tidbits like this and has loads of recipes.

And yes, Dad: you were right.


Like the Chronicle Flask’s Facebook page for regular updates, or follow @chronicleflask on Twitter. All content is © Kat Day 2017. You may share or link to anything here, but you must reference this site if you do.


All comments are moderated. Abusive comments will be deleted, as will any comments referring to posts on this site which have had comments disabled.

Unsafe slime? How bad is borax, really?

Slime is a fun bit of chemistry that anyone can do – but how safe is it?

It’s August, which means it’s the school summer holidays in the UK and, as is traditional, it’s been pouring with rain. This has left many a cabin-fevered child searching for ways to amuse themselves.

Start hunting around the internet for things to do and it’s not long before the concept of the “kitchen science” experiment turns up. There are actually loads of these, and it’s even possible to do some of them without permanently damaging anyone’s eardrums, dusting every surface with cornflour and leaving a parent rocking in the corner muttering “why did I encourage this?” over and over to themselves.

Which brings me to slime – surely the go-to fun science experiment. What’s not to love about taking some of that white, runny PVA glue found in gallon bottles in school classrooms everywhere and magically turning it into glorious, gloopy slime? Add some food colouring and you can even have coloured slime! Add glitter and… well you get the idea.

Many YouTubers love this stuff. A quick search for “make your own slime” turns up pages and pages of videos, giving instructions as to how to do just that.

In fact, it seems that slime-making is currently a bit of a craze, with children all over the world making all kids of different types. There’s unicorn slime, rainbow slime, fluffy slime – you name it. Brilliant, you might think, a whole generation of youngsters interested in chemistry. What’s not to like about that?

Well, as a few news reports have recently pointed out, there might be a problem if children are handling lots of borax, or certain other chemicals.

Polyvinyl alcohol

Slime, you see, is a really nice example of polymerisation – the same process that goes on when plastics are made. PVA glue, the usual starting material, is a polymer itself. The letters PVA stand for polyvinyl alcohol (its systematic name is poly(1-hydroxyethylene)), but literally no one calls it that, not even A-level chemistry teachers forced, kicking and screaming, to follow IUPAC naming conventions).

PVA is a long chain of carbon atoms with alternating CH2 groups and alcohol, OH, groups. As anyone who’s ever handled it will know, it’s quite runny. Thick, yes, but still runny. Basically, it’s a liquid.

But if you mix it with borax, aka sodium tetraborate, some magic happens. And when I say magic, I mean chemistry. The chains of atoms become linked together (essentially via hydrogen bonds), and as a result the new substance is a lot more solid. But it’s not quite solid. At least, not in the sense of something that keeps its own shape. No, this is weird, peculiar, stuff that sits somewhere in between solid and liquid.

Borax joins the chains of PVA together.

There’s something tactilely pleasing about slime. Put it in your hands and it feels cool and slightly moist – your fingers slide over and through it with a sort of squeaky sensation. Leave it alone for a few minutes and it flows to take the shape of its container, forming a perfect, mirror finish on its surface. Tip the pot over, and it will gradually creep toward the edge.

It is safe to handle. Here are my hands, handling it (we made this at the March for Science in Bristol back in April). You will notice that my skin is not falling off.

It’s white unless you dye it. We went for red, which is pleasingly disturbing.

I did, though, wash my hands after I took that photo. And that’s because, while the PVA is pretty harmless (as you know if, like me, you spent your primary school days painting your hands with glue just so you could peel it off later) the borax isn’t. At least, not entirely.

Before I go any further, let’s be clear: lots of things aren’t “entirely” safe. Most of the cleaning products in the average kitchen and bathroom have warning levels of varying degrees of severity on them, and we don’t think too much about it. Even things that are designed to be in contact with skin, like hand soap and shampoo, usually have warnings about eye irritation and statements like “if irritation occurs, discontinue use”. Even water is deadly in the wrong context (don’t try inhaling too much of it, for example). So when I say not entirely safe, I don’t mean to suggest that panic needs to ensue if your child has so much as looked at a borax solution.

Borax has traditionally been used in several household products, although admittedly more in the US than in the UK. Most people know it as a laundry additive, where it softens water, brightens whites and inhibits the growth of the bacteria and fungi which can make clothes stinky.

It’s not considered a lethal compound, in the sense that you’d have to eat a large quantity – far more than anyone might reasonably consume by accident – before it became deadly, and you’d almost certainly throw up long before then. Borax can irritate the skin (but see note at the end), and inhalation of the dust is well known to irritate the lungs. This is more of a concern for people working with borax on an industrial scale day in and day out – but it could become an issue if, say, someone were making slime every single day using large quantities of borax (not recommended).

Then there’s another concern. If borax is exposed to hydrochloric acid, it forms boric acid. Long-term exposure to boric acid can cause kidney damage and fertility problems, both in men and women. It’s also potentially teratogenic, which means it could cause harm to an unborn child. Borax and boric acid are not the same thing but, of course, our stomachs contain hydrochloric acid. Therefore, if you swallow borax, you’re effectively exposed to boric acid.

Frequent exposure to borax might cause skin irritation (see note at end)

These risks are the reason borax was added to the Substance of Very High Concern (SVHC) candidate list on 16 December 2010, which is the first step in restricting use of the chemical within the European Union. As far as I can establish, it’s still a “candidate”, but the European Chemicals Agency substance information card does state that borax may “damage fertility or the unborn child”.

Now, the chances of achieving the levels involved in “long-term exposure” from occasionally handling borax solutions are slim to none. It’s safe to handle dilute borax solutions (see notes at the end). Indeed, borax is even approved as a food preservative in the EU (E285). To put it into context, alcohol (ethanol) also causes organ damage and is a known teratogen and a carcinogen (which borax isn’t) and that turns up in all sorts of things we’re regularly in contact with, everything from antiseptic hand gels to mouthwashes to drinks (and it’s also approved as a food additive, E1510 – which is good news if you like liqueur chocolates).

I personally have no concerns about handling dry borax in small quantities to make up solutions myself. However, I wouldn’t let children do that part. Once made I’d consider the solution safe, so long as children were supervised and weren’t doing anything really silly like drinking it. I’d also tell children to wash their hands after handling the slime and, if I thought they had sensitive skin for any reason (eczema, say) I’d suggest plastic gloves.

Borax is easy to buy online.

Because of the European Regulations, it theoretically shouldn’t be that easy to get hold of borax in the UK. But I found it for sale on Amazon.co.uk. The listing says that it “can only be purchased by Professionals and by trade and business users,” (sic) but I ordered some and there were no checks. A plastic bag full of borax powder (the decahydrate, Na2B4O7.10H2O) arrived within a few days.

Most of the news reports doing the rounds have involved children suffering from severe skin irritation. For example, in February this year a woman from Manchester posted photos of chemical burns on her daughter’s hands online as a warning to other parents. However, looking into the details of that story it turns out that she wasn’t using borax. In fact, she used fabric detergent “as an alternative”.

Take a look at pretty much type of fabric detergent and you’ll find hazard warnings, usually indicating it’s corrosive and definitely saying “keep out of reach of children”. Those are there for a reason. Fabric detergent is designed to remove grease and  stains. In other words, to break down fats and proteins, and guess what your skin is made of? Yep. Don’t get neat fabric detergent on your hands. Even if your skin isn’t particularly sensitive, it’s almost certainly going to irritate it.

Fabric detergents are usually labelled corrosive.

Bottom line: don’t use fabric detergent as a borax alternative to make slime, because there’s a real risk that enough of it could get onto your (or your child’s) skin that it could irritate.

When it comes to borax itself, if I understand things correctly, it’s not actually restricted in the EU – including the UK – yet. (I might have this wrong – do correct me if you think I have.) It’s not something you can pop to the supermarket and buy, but as we’ve established you can buy it online fairly easily.

Borax solutions are extremely unlikely to cause harm, if used sensibly (boron chemist David Schubert agrees, see note at the end). But, once again: if you’re doing this experiment it’s best not to let children make up the solution – an adult should do that part.

A sensible quantity is about 1 gram of borax in 25 millilitres of warm water (for those without a metric scale: one level teaspoon of borax in half a cup measure of water). This will actually polymerise quite a bit of PVA – you don’t need that much. I recommend making the borax solution in a labelled plastic cup which you should throw away afterwards. Don’t leave it anywhere where someone might mistake it for their drink! Once the solution is made just add a little bit to some PVA in another plastic cup, give it a good stir with a spoon or a lolly stick, and the magic (chemistry) will happen. Add food colouring if you like (be aware that it can stain!) and enjoy the slimy goodness. (See additional note for teachers & technicians at the end.)

Do supervise any and all slime-making, don’t let children handle slime all day, every day, and if you know they have sensitive skin, make them wear plastic gloves. Make them wash their hands before they eat or drink anything.

If a child has made slime somewhere else, at a party or a science club, say, and they bring it home, again, there’s no need to worry. They can play with it perfectly safely. Don’t let them leave it on a radiator, though. That will end in disaster.

I am not a fan of the “it might be a bit dangerous, so no one should ever try it” mentality. I mean, that’s just no fun, is it? But I’m also not a fan of unnecessary risks – because trips to hospital are equally no fun. So if you want to try this experiment, I’ve summarised my guidance in this graphic.

Stay safe with slime by following this guidance

And if you want a even safer slimy experiment, and you can bear the mess, I suggest mixing cornflour with just enough water to make a thick paste in a shallow tray. Then let your kids stick their fingers in it, bounce things off it, and generally play with it. (Check out this link to find out more about why it behaves as it does.) I’m told it makes an even better mixture if you add basil seeds.

Have fun this summer, stay safe, and don’t eat the slime!

Note for teachers and technicians:
This post is aimed at people who might be making slime at home, and hence not have easy access to CLEAPSS guidelines. Anyone doing the experiment with students in school should, of course, refer to their department’s risk assessments and policies. For the record, at the time of writing, CLEAPSS classify 0.2M or 40g/dm³ (or more dilute) borax solutions as “low hazard”.

Edit: 15th August 2017:
After I wrote and published this post I was contacted by someone who specialises in boron chemistry, David Schubert. Now, if anyone knows about boron safety, it’ll be the guy who spends all day working with boron-based chemicals! He told me that borax has been shown to be safe for skin contact. He also said that you absorb less boron through intact skin than you consume by eating a normal, healthy diet (boron is a naturally-occurring trace-mineral – nuts and pulses are good sources), and even provided me with a link to a research paper on the subject. I asked him about the high pH of boron solutions, since alkaline solutions can be irritating in general, and he told me that borax solutions are less alkaline than sodium carbonate and not at all irritating to skin. At this point I will stress that when we’ve seen reports of children suffering skin irritation after making slime, it hasn’t been clear exactly what they’ve been handling. It’s very likely they were adding other chemicals to their slime, and it was actually one of those causing the irritation. Perhaps they developed an allergy to something. It’s impossible to say. Either way, the bottom line is that borax solutions are pretty safe – there’s no need to worry. (Still don’t drink them though!)


Like the Chronicle Flask’s Facebook page for regular updates, or follow @chronicleflask on Twitter. All content is © Kat Day 2017. You may share or link to anything here, including the images, but you must reference this site if you do.


All comments are moderated. Abusive comments will be deleted, as will any comments referring to posts on this site which have had comments disabled.

Is acrylamide in your toast really going to give you cancer?

Acrylamide has been in the news today, and this might be the understatement of the year. Front page newspaper headlines have been yelling everything from “Brits officially warned off chips” to “Over-cooked potatoes and burnt toast could cause cancer” to the marginally more restrained “What is the real cancer risk from eating roast potatoes or toast?” All this has been accompanied by radio interviews with everyone from actual scientists to professional chefs to people keen to share their roast potato recipes. I expect there have been television interviews too – I haven’t had a chance to watch.

Hey, what could be more traditional, or more fun, than a food-health scare in January?

Acrylamide

Acrylamide

Never fear, the Chronicle Flask is here to sort out the science. Let’s get to the facts: what is acrylamide?

It’s actually a rather small molecule, and it falls into a group of substances which chemists call amides. Other well-known amides include paracetamol and penicillin, and nylon is a polyamide – that is, lots of amide molecules joined together. Amide linkages (the CO-NH bit) are a key feature of proteins, which means they appear in all kinds of naturally-occurring substances.

And this is where the food-acrylamide link comes in. Because acrylamide, or prop-2-enamide to give it its official name (the one only ever used by A-level chemistry students), forms when certain foods are cooked.

Acrylamide occurs naturally in fried, baked, and roasted starchy foods.

Acrylamide occurs naturally in fried, baked, and roasted starchy foods.

It begins with an amino acid called asparagine. If you’re wondering whether, with that name, it has anything to do with asparagus, you’d be on the right track. It was first isolated in the early 1800s from asparagus juice. It turns out to be very common: it’s found in dairy, meat, fish and shellfish, as well as potatoes, nuts, seeds and grains, amongst other things.

This is where the trouble begins. When asparagine is combined with sugars, particularly glucose, and heated, acrylamide is produced. The longer the food is heated for, the more acrylamide forms. This is a particular issue with anything wheat or potato-based thanks to the naturally-occurring sugars those foods also contain – hence all the histrionics over chips, roast potatoes and toast.

How dangerous is acrylamide? The International Agency for Research on Cancer have classified it as a Group 2A carcinogen, or a “probable” carcinogen. This means there’s “limited evidence” of carcinogenicity in humans, but “sufficient evidence” of carcinogenicity in experimental animals. In other words (usually) scientists know the thing in question causes cancer in rats – who’ve generally been fed huge amounts under strictly controlled conditions – but there isn’t any clear evidence that the same link exists in humans. It’s generally considered unethical to lock humans in cages and force feed them acrylamide by the kilo, so it’s tricky to prove.

screen-shot-2017-01-23-at-22-10-46At this point I will point out that alcoholic beverages are classified as Group 1 carcinogens, which means there is “sufficient evidence” of carcinogenicity in humans. Alcohol definitely causes cancer. If you’re genuinely concerned about your cancer risk, worry less about the roast potatoes in your Sunday roast and more about the glass of wine you’re drinking with them.

But back to acrylamide. In animals, it has been shown to cause tumours. It’s one of those substances which can be absorbed through the skin, and after exposure it spreads around the body, turning up in the blood, unexposed skin, the kidneys, the liver and so on. It’s also been shown to have neurotoxic effects in humans. BUT, the evidence that it causes cancer in humans under normal conditions isn’t conclusive. A meta-analysis published in 2014 concluded that “dietary acrylamide is not related to the risk of most common cancers. A modest association for kidney cancer, and for endometrial and ovarian cancers in never smokers only, cannot be excluded.” 

The dose makes the poison is an important principle in toxicology (image credit: Lindsay Labahn)

The dose makes the poison (image credit: Lindsay Labahn)

As I so often find myself saying in pieces like this: the dose makes the poison. The people who have suffered neurotoxic effects from acrylamide have been factory workers. In one case in the 1960s a patient was handling 10% solutions of the stuff, and “acknowledged that the acrylamide solution frequently had splashed on his unprotected hands, forearms and face.” The earliest symptom was contact dermatitis, followed by fatigue, weight loss and nerve damage.

Because of these very real risks, the Occupational Safety and Health Administration and the National Institute for Occupational Safety and Health have set occupational exposure limits at 0.03 mg/m3 over an eight-hour workday, or 0.00003 g/m3.

Let’s contrast that to the amount of acrylamide found in cooked food. The reason all this fuss erupted today is that the Food Standards Agency (FSA) published some work which estimated the amounts of acrylamide people are likely to be exposed to in their everyday diet.

The highest concentrations of acrylamide were found in snacks (potato crisps etc), and they were 360 μg/kg, or 0.00036 g/kg or, since even the most ardent crisp addict doesn’t usually consume their favoured snacks by the kilo, 0.000036 g/100g. (Remember that those occupational limits are based on continuous exposure over an eight-hour period.)

In other words, the amounts in even the most acrylamide-y of foodstuffs are really quite tiny, and the evidence that acrylamide causes cancer in humans is very limited anyway. There is some evidence that acrylamide accumulates in the body, though, so consuming these sorts of foods day in and day out over a lifetime could be a concern. It might be wise to think twice about eating burnt toast every day for breakfast.

Oh yes, and there’s quite a lot of acrylamide in cigarette smoke. But somehow I doubt that if you’re a dedicated smoker this particular piece of information is going to make much difference.

As the FSA say at the end of their report:

Your toast almost certainly isn't going to kill you.

Your toast almost certainly isn’t going to kill you.

“The dietary acrylamide exposure levels for all age classes are of possible concern for an increased lifetime risk of cancer. The results of the survey do not increase concern with respect to acrylamide in the UK diet but do reinforce FSA advice to consumers and our efforts to support the food industry in reducing acrylamide levels.”

This is not, I would suggest, QUITE the same as “Crunchy toast could give you cancer, FSA warns” but, I suppose, “FSA says risk hasn’t really changed” wouldn’t sell as many newspapers.

One last thing, there’s acrylamide in coffee – it forms when the beans are roasted. There’s more in instant coffee and, perhaps counterintuitively, in lighter-roasted beans. No one seems to have mentioned that today, possibly because having your coffee taken away in January is just too terrifying a prospect to even contemplate. And also perhaps because coffee seems to be associated with more health benefits than negatives. Coffee drinkers are less likely to develop type 2 diabetes, Parkinson’s disease, dementia, suffer fewer cases of some cancers and fewer incidences of stroke. Whether the link is causal or not isn’t clear, but coffee drinking certainly doesn’t seem to be a particularly bad thing, which just goes to show that when it comes to diet, things are rarely clearcut.

Pass the crisps, someone.


Like the Chronicle Flask’s Facebook page for regular updates, or follow @chronicleflask on Twitter. In need of a groovy new mug for your oh-so-healthy coffee? Check out this page.


All comments are moderated. Abusive comments will be deleted, as will any comments referring to posts on this site which have had comments disabled.

 

The Chronicles of the Chronicle Flask: 2016

2016 is limping to its painful conclusion, still tossing out last-minute nasty surprises like upturned thumb tacks in the last few metres of a marathon. But the year hasn’t been ALL bad. Some fun, and certainly interesting, things happened too. No, really, they did, honestly.

So with that in mind, let’s have a look back at 2016 for the Chronicle Flask….

January kicked off with a particularly egregious news headline in a well-known broadsheet newspaper: Sugar found in ketchup and Coke linked to breast cancer. Turns out that the sugar in question was fructose. Yes, the sugar that’s in practically everything, and certainly everything that’s come from a plant. So why did the newspaper in question choose ketchup and Coke for their headline instead of, oh, say, fruit juice or honey? Surely not just in an effort to sell a few more newspapers after the overindulgent New Year celebrations. Surely.

octarineThere was something more lighthearted to follow when IUPAC  verified the discoveries of elements 113, 115, 117 and 118. This kicked off lots of speculation about the elements’ eventual names, and the Chronicle Flask suggested that one of them should be named Octarine in honour of the late Sir Terry Pratchett. Amazingly, this suggestion really caught everyone’s imagination. It was picked up in the national press, and the associated petition got over 51 thousand signatures!

In February I wrote a post about the science of statues, following the news that a statue to commemorate Sir Terry Pratchett and his work had been approved by Salisbury City Council. Did you know that there was science in statues? Well there is, lots. Fun fact: the God of metalworking was called Hephaestus, and the Greeks placed dwarf-like statues of him near their Hearths – could this be where the fantasy trope of dwarves as blacksmiths originates?

MCl and MI are common preservatives in cosmetic products

MCl and MI are common preservatives in cosmetic products

My skeptical side returned with a vengeance in March after I read some online reviews criticising a particular shampoo for containing a substance known as methylchloroisothiazolinone. So should you be scared of your shampoo? In short, no. Not unless you have a known allergy or particularly sensitive skin. Otherwise, feel free to the pick your shampoo based on the nicest bottle, the best smell, or the forlorn hope that it will actually thicken/straighten/brighten your hair as promised, even though they never, ever, ever do.

Nature Chemistry published Another Four Bricks in the Wall in April – a piece all about the potential names of new elements, partly written by yours truly. The month also brought a sinus infection. I made the most of this opportunity by writing about the cold cure that’s 5000 years old. See how I suffer for my lovely readers? You’re welcome.

In May I weighed in on all the nonsense out there about glyphosate (and, consequently, learned how to spell and pronounce glyphosate – turns out I’d been getting it wrong for ages). Is it dangerous? Nope, not really. The evidence suggests it’s pretty harmless and certainly a lot safer than most of its alternatives.

may-facebook-postSomething else happened in May: the Chronicle Flask’s Facebook page received this message in which one of my followers told me that my post on apricot kernels had deterred his mother from consuming them. This sort of thing makes it all worthwhile.

In June the names of the new elements were announced. Sadly, but not really very surprisingly, octarine was not among them. But element 118 was named oganesson and given the symbol Og. Now, officially, this was in recognition of the work of Professor Yuri Oganessian, but I for one couldn’t help but see a different reference. Mere coincidence? Surely not.

July brought another return to skepticism. This time, baby wipes, and in particular a brand that promise to be “chemical-free”. They’re not chemical-free. Nothing is chemical-free. This is a ridiculous label which shouldn’t be allowed (and yet, inexplicably, is still in use). It’s all made worse by the fact that Water Wipes contain a ‘natural preservative’ called grapefruit seed extract which, experiments have shown, only actually acts as a preservative when it’s contaminated with synthetic substances. Yep. Turns out some of Water Wipes claims are as stinky as the stuff they’re designed to clean up.

Maria Lenk Aquatic Enter, Tuesday, Aug. 9, 2016. (AP Photo/Matt Dunham)

Maria Lenk Aquatic Enter, Tuesday, Aug. 9, 2016. (AP Photo/Matt Dunham)

August brought the Olympics, and speculation was rife about what, exactly, was causing the swimming pools to turn such strange shades of green. Of course, the Chronicle Flask knew the correct solution…

August also saw MMS and CD reared their ugly heads on social media again. CD (chlorine dioxide) is, lest we forget, a type of bleach solution which certain individuals believe autistic children should be made to drink to ‘cure’ them. Worse, they believe such children should be forced to undergo daily enemas using CD solutions. I wrote a summary page on MMS (master mineral solution) and CD, as straight-up science companion to the commentary piece I wrote in 2015.

mugsSeptember took us back to pesticides, but this time with a more lighthearted feel. Did you know that 99.99% of all the pesticides you consume are naturally-occurring? Well, you do if you regularly read this blog. The Chronicle Flask, along with MugWow, also produced a lovely mug. It’s still for sale here, if you need a late Christmas present… (and if you use the code flask15 you’ll even get a discount!)

In October, fed up with endless arguments about the definition of the word ‘chemical’ I decided to settle the matter once and for all. Kind of. And following that theme I also wrote 8 Things Everyone Gets Wong About ‘Scary’ Chemicals for WhatCulture Science.

Just in case that wasn’t enough, I also wrote a chapter of a book on the missing science of superheroes in October. Hopefully we should see it in print in 2017.

Sparklers are most dangerous once they've gone out.

Sparklers are most dangerous once they’ve gone out.

I decided to mark Fireworks Night in November by writing about glow sticks and sparklers. Which is riskier? The question may not be as straightforward as you’d imagine. This was followed by another WhatCulture Science piece, featuring some genuinely frightening substances: 10 Chemicals You Really Should Be Scared Of.

And that brings us to December, and this little summary. I hope you’ve enjoyed the blog this year – do tell your friends about it! Remember to follow @ChronicleFlask on Twitter and like fb.com/chronicleflask on Facebook – both get updated more or less daily.

Here’s wishing all my lovely readers a very Happy New Year – enjoy a drop of bubbly ethanol solution and be careful with the Armstrong’s mixture…. 

See you on the other side!

new-year-1898553_960_720

8 Things Everyone Gets Wrong About ‘Scary’ Chemicals

scaryChemicals. The word sounds a little bit scary, doesn’t it? For some it probably conjures up memories of school, and that time little Joey heated something up to “see what would happen” and you all had to evacuate the building. Which was actually good fun – what’s not to love about an unplanned fire drill during lesson time?

But for others the word has more worrying associations. What about all those lists of additives in foods, for starters? You know, the stuff that makes it all processed and bad for us. Don’t we need to get rid of all of that? And shouldn’t we be buying organic food, so we can avoid ….

….Read the rest of this article at WhatCulture Science.


This is my first article for WhatCulture Science – please do click the link and read the rest!


Like the Chronicle Flask’s Facebook page for regular updates, or follow @chronicleflask on Twitter. In need of a groovy new mug? Check out this page.

Do you really need to worry about baby wipes?

Never mind ingredients, just give me a packet that's not empty!

Never mind ingredients, just give me a packet that’s not empty!

A little while back I wrote a post about shampoo ingredients, and in passing I mentioned baby wipes. Now, these are one of those products which you’ve probably never bought if you’re not a parent, but as soon as you are you find yourself increasingly interested in them. Yes, I know, reusable ‘wipes’ are a thing. But after dealing with a nappy explosion at 2am in the morning, I’m willing to bet that more than one parent’s environmental conscience has gone in the rubbish bin along with a bag of horror they never want to see again, at least for a little while.

But which wipes to buy? The cheapest ones? The nicest-smelling ones? The fragrance-free ones? The ones with the plastic dispenser on the top that allow you to easily grab one wipe at a time? Or not, because those bulky dispensers produce yet more plastic waste? Or just whichever brand you grabbed first at the all-night supermarket at some unpleasant hour that’s too late to be night yet too early to be morning?

All of the above at one time or another, probably. However, I’m going to suggest that one thing you can stop worrying about right now is whether or not your wipes are labelled ‘chemical-free’.

As I’ve explained before, everything is made up of chemicals. By any sensible definition, water is a chemical, and thus the claim that Water Wipes® (“the world’s purest baby wipe”) are “chemical free” is simply incorrect.

These wipes are not, actually, chemical-free.

These wipes are not, actually, chemical-free.

In fact, Water Wipes® aren’t even, as you might imagine, made of some sort of non-woven fabric impregnated with plain water. No, they contain something else: grapefruit seed extract.

Well, that sounds natural, I hear you say. It does, doesn’t it? Grapefruit, that sounds fresh. Seed, well seeds are healthy, aren’t they? And the word ‘extract’ is very natural-sounding. What’s the problem?

Let’s start with what grapefruit seed extract, also called GSE, actually is. It’s made from the seeds, pulp and white membranes of grapefruit. These ingredients are ground up and a drop of glycerin is added. Glycerin, by the way, is otherwise known as glycerol, or propane-1,2,3-triol. It’s naturally-occurring – it’s one of the molecules you get when you break up fats – and it’s usually made from plants such as soybeans or palm (uh oh…), or sometimes from tallow (oh dear…) or as a byproduct of the petroleum industry (yikes! – I wonder if the manufacturers of Water Wipes® enquired about the nature of the glycerin being added to their product…?)

But anyway, back to GSE. Like all plant extracts, grapefruit seed extract is stuffed full of other chemicals that occur naturally. In particular, flavonoids, ascorbic acid (vitamin C), tocopherols, citric acid, limonoids and sterols.

citric acid synthetic vs natural

Can you tell the difference?

So… in short, not chemical-free at all. Not even a bit. The problem here is that, in marketing, the term ‘chemical-free’ is used to mean something that only contains ingredients from ‘natural’ sources. But this is meaningless. Take citric acid, for example. (E330 by the way – E numbers don’t mean something’s deadly, either. In fact, quite the opposite.) There’s no difference between citric acid extracted from a grapefruit and citric acid prepared in a laboratory. They both have exactly the same atoms and the same molecular formula and structure. They both react in the same way.

They’d both be classified as corrosive in high concentrations, and irritant in low concentrations. This isn’t even “might” cause irritation. This is absolutely, definitely, positively WILL cause irritation.

Wait, hang on a minute! There’s a potentially corrosive chemical in the ‘chemical-free’ baby wipes, and unsuspecting parents are putting it on their baby’s skin?!

Yep.

But before anyone runs off to write the next Daily Mail headline, let’s be clear. It’s really not going to burn, alien acid-style, through a new baby’s skin. It’s not even going to slightly redden a baby’s skin, because the quantity is so miniscule that it quite literally has no corrosive properties at all. It’s the same logic as in the old adage that “the dose makes the poison“.

This is where we, as consumers, ought to stop and think. If a fraction of a drop of citric acid is harmless then…. perhaps that small quantity of PEG 40 hydrogenated castor oil or sodium benzoate in most (considerably less expensive, I’m just saying) other brands of baby wipes isn’t as awful as we thought, either…

Indeed, it’s not. But what sodium benzoate in particular IS, is a very effective preservative.

Grapefruit seed extract is marketed as a natural preservative, but studies haven't backed up this claim.

Grapefruit seed extract is allegedly a natural preservative, but studies haven’t backed up this claim.

Why does this matter? Well, without some sort of preservative baby wipes, which sit in a moist environment for weeks or months or even years, might start to grow mould and other nasties. You simply can’t risk selling packets of water-soaked fabric, at a premium price, without any preservative at all, because one day someone might open one of those packets and find it full of mould. At which point they would, naturally, take a photo and post it all over social media. Dis-as-ter.

This is why Water Wipes® include grapefruit seed extract, because it’s a natural preservative. Except…

When researchers studied GSE and its antimicrobial properties they found that most of their samples were contaminated with benzethonium chloride, a synthetic preservative, and some were contaminated with other preservatives, some of which really weren’t very safe at all. And here’s the kicker, the samples that weren’t contaminated had no antimicrobial properties.

In other words, either your ‘natural’ grapefruit seed extract is a preservative because it’s contaminated with synthetic preservatives, or it’s not a preservative at all.

If you're worried, just use cotton wool pads and water.

You can always use cotton wool pads and water.

If you’re worried that baby wipes may be irritating your baby’s skin – I’m not claiming this never happens – then the best, and cheapest, thing to do would be to simply follow the NHS guidelines and use cotton wool and water. It’s actually easier and less messy than you might imagine – packets of flat, cosmetic cotton wool pads are readily available (and pretty cheap). Simply dip one in some clean water, wipe and throw it away. It’s really no more difficult or messy than wipes.

But if you’re choosing a particular brand of wipes on the basis that they’re “chemical-free”, despite the fact that other types have never actually caused irritation, you can stop. Really. Buy the cheap ones. Or the nicest-smelling ones, or the ones that come out of the packet most easily. Because NONE of them are chemical-free, and it’s really not a problem.


Follow The Chronical Flask on Facebook at fb.com/chronicleflask and Twitter as @chronicleflask for regular updates.