In the fridge or on the windowsill: where’s the best place to keep tomatoes?

Fresh fruit and vegetables are great, but where’s the best place to store them?

I’ve mentioned before that my Dad is a professional plant-wrangler (if you’ve never read the electric daisies post, do go and have a look – it’s a little-read favourite) and he often brings me home-grown fruit and vegetables.

What follows is an inevitable disagreement about storage, specifically, my habit of putting everything in the fridge.

In my defence, modern houses rarely have pantries (boo) and we don’t even have a garage. We do have a shed, but it’s at the bottom of our poorly-lit, somewhat muddy garden. Do I want to traipse out there on a cold, dark, autumn evening? No, I do not. So the fabled “cool, dark place” is a bit of problem. My fridge is cool and dark, I have argued, but here’s the thing – turns out, it’s too cool. And quite probably too dark.

This I have learned from the botanist James Wong (@botanygeek on Twitter), whose talk I attended on Monday this week at the Mathematical Institute in Oxford. James, it turns out, had a rather similar argument with his Mum, particularly regarding tomatoes.

We should’ve listened to out parents, because they were right. A lot of fruit and vegetables really are better stored outside of the fridge, and for tomatoes in particular “better” actually means “more nutritious”.

Lycopene is a very long molecule with lots of double C=C bonds.

Tomatoes, James explained, contain a lot of a chemical called lycopene. It’s a carotene pigment, and it’s what gives tomatoes their red colour.

Lycopene has lots of double bonds between its carbon atoms which form something chemists call a conjugated system. This has some rather cool properties, one of which is an ability to absorb certain wavelengths of light. Lycopene is especially good at absorbing blue and green wavelengths, leaving our eyes to detect the red light that’s left.

Lycopene absorbs blue and green light, which is why tomatoes appear red.

Tomatoes and lycopene also seem to have a lot of health benefits. There’s some evidence that lycopene might reduce the risk of prostate and other cancers. It also appears to reduce the risk of stroke, and eating tomato concentrate might even help to protect your skin from sun damage (don’t get any ideas, you still need sunblock). Admittedly the evidence is currently a bit shaky – it’s a case of “more research is needed” – but even if it turns out to that the causative relationship isn’t terribly strong, tomatoes are still a really good source of fibre and vitamins A, C and E. Plus, you know, they taste yummy!

But back to the fridge. Surely they will keep longer in the fridge, and the low temperatures will help to preserve the nutrients? Isn’t that how it works?

Well, no. As James explained, once tomatoes are severed from the plant they have exactly one purpose: to get eaten. The reason, from the plant’s point of view, is that the critter which eats them will hopefully wander off and – ahem – eliminate the tomato seeds at a later time, somewhere away from the parent plant. This spreads the seeds far and wide, allowing little baby tomato plants to grow in a nice, open space with lots of water and sun.

For this reason once the tomato fruit falls, or is cut, from the tomato plant it doesn’t just sit there doing nothing. No, it carries on producing lycopene. Or rather, it does if the temperature is above about 10 oC. Below that temperature (as in a fridge), everything more or less stops. But, leave a tomato at room temperature and lycopene levels increase significantly. Plus, the tomato pumps out extra volatile compounds – both as an insect repellant and to attract animals which might usefully eat it – which means… yes: room temperature tomatoes really do smell better. As if that weren’t enough, chilling tomatoes can damage cell membranes, which can actually cause them to spoil more quickly.

In summary, not only will tomatoes last longer out of the fridge, they will actually contain more healthy lycopene!

Anecdotally, once I got over my scepticism and actually started leaving my tomatoes on my windowsill (after years of refrigeration) I discovered that it’s true. My windowsill tomatoes really do seem to last longer than they used to in the fridge, and they almost never go mouldy. Of course, it’s possible that I might not be comparing like for like (who knows what variety of tomato I bought last year compared to this week), but I urge you to try it for yourself.

James mentioned lots of other interesting bits and pieces in his talk. Did you know that sun-dried shiitake mushrooms are much higher in vitamin D? Or that you can double the amount of flavonoid you absorb from your blueberries by cooking them? (Take that, raw food people!) Storing apples on your windowsill is likely to increase the amount of healthy polyphenols in their skin, red peppers are better for you than green ones, adding mustard to cooked broccoli makes it more nutritious, and it would be much better if we bought our butternut squash in the autumn and saved it for Christmas – it becomes sweeter and more flavoursome over time.

In short, fascinating. Who wants to listen to some “clean eater” making it up as they go along when you can listen to a fully-qualified botanist who really knows what he’s talking about? Do check out the book, How to Eat Better, by James Wong – it’s packed full of brilliant tidbits like this and has loads of recipes.

And yes, Dad: you were right.


Like the Chronicle Flask’s Facebook page for regular updates, or follow @chronicleflask on Twitter. All content is © Kat Day 2017. You may share or link to anything here, but you must reference this site if you do.


All comments are moderated. Abusive comments will be deleted, as will any comments referring to posts on this site which have had comments disabled.

Advertisements

Absurd alkaline ideas – history, horror and jail time

I’ve written about the absurdity of alkaline diets before, and found myself embroiled in more than one argument about the idea.

To sum up quickly, it’s the notion that our bodies are somehow “acidic”, and if only we could make them “alkaline” all our health problems – cancer included – would disappear. The way you make your body “alkaline” is, mainly, by eating lots of vegetables and some fruits (particularly citrus fruits – yes, I know, I know).

The eating fruit and vegetables bit aside (they’re good for you, you should eat them), it’s all patent nonsense. Our bodies aren’t acidic – well, other than where they’re supposed to be acidic (like our stomachs) – and absolutely nothing we eat or drink can have any sort of effect on blood pH, which is kept firmly between 7.35-7.45 by (mainly) our lungs and kidneys. And if your kidneys or lungs are failing, you need something a little stronger in terms of medical intervention than a slice of lemon.

But who first came up with this crazy idea?

Claude Bernard carried out experiments on rabbits.

Actually, we can probably blame a nineteenth century French biologist and physiologist, Claude Bernard, for kicking the whole thing off, when he noticed that if he changed the diet of rabbits from largely plant-based to largely animal-based (i.e. from herbivorous to carnivorous) their urine became more acidic.

This observation, followed by a lot of speculation by nutritionists and some really quite impressively dodgy leaps of reasoning (by others, I should stress – not Bernard himself), has lead us to where we are now: umpty-million websites and books telling anyone who will listen that humans need to cut out all animal products to avoid becoming “acidic” and thus ill.

Bernard’s rabbits were, it seems, quite hungry when he got them – quite possibly they hadn’t been fed – and he immediately gave them boiled beef and nothing else. Meat contains the amino acids cysteine and methionine, both of which can produce acid when they’re metabolised (something Bernard didn’t know at the time). The rabbits excreted this in their urine, which probably explains why it became acidic.

Now, many of you will have noticed several problems here. Firstly, rabbits are herbivores by nature (they do not usually eat meat in the wild). Humans aren’t herbivores. Humans are omnivores, and we have quite different digestive processes as a result. It’s not reasonable to extrapolate from rabbits to humans when it comes to diet. Plus, even the most ardent meat-lover probably doesn’t only eat boiled beef – at the very least people usually squeeze in a battered onion ring or a bit of coleslaw along the way. Most critically of all, urine pH has no direct relationship with blood pH. It tells us nothing about the pH of “the body” (whatever we understand that to mean).

The notion that a plant-based diet is somehow “alkaline” should really have stayed in the 19th century where it belonged, and at the very least not limped its way out of the twentieth. Unfortunately, somewhere in the early 2000s, a man called Robert O Young got hold of the idea and ran with it.

Young’s books – which are still available for sale at the time of writing – describe him as “PhD”, even though he has no accredited qualification.

Boy, did he run with it. In 2002 he published a book called The pH Miracle, followed by The pH Miracle for Diabetes (2004), The pH Miracle for Weight Loss (2005) and The pH Miracle Revised (2010).

All of these books describe him either as “Dr Robert O Young” or refer to him as “PhD”. But he has neither a medical qualification nor a PhD, other than one he bought from a diploma mill – a business that offers degrees for money.

The books all talk about “an alkaline environment” and state that so-called acidic foods and drinks (coffee, tea, dried fruit, anything made with yeast, meat and dairy, amongst other foodstuffs) should be avoided if not entirely eliminated.

Anyone paying attention will quickly note that an “alkaline” diet is basically a very restrictive vegan diet. Most carbohydrate-based foods are restricted, and lots of fruits and nuts fall into the “moderately” and “mildly” acidic categories. Whilst a vegan diet can be extremely healthy, vegans do need to be careful that they get the nutrients they need. Restricting nuts, pulses, rice and grains as well as removing meat and dairy could, potentially, lead to nutritional deficiencies.

Young also believes in something called pleomorphism, which is a whole other level of bonkers. Essentially, he thinks that viruses and bacteria aren’t the cause of illnesses – rather, the things we think are viruses and bacteria are actually our own cells which have changed in response to our “acidic environments”. In Young’s mind, we are making ourselves sick – there is one illness (acidosis) and one cure (his alkaline diet).

It’s bad enough that he’s asserting such tosh and being taken seriously by quite a lot of people. It’s even worse that he has been treating patients at his ranch in California, claiming that he could “cure” them of anything and everything, including cancer.

One of his treatments involved intravenous injections of solutions of sodium hydrogen carbonate, otherwise known as sodium bicarbonate or baking soda. This common cookery ingredient does produce an alkaline solution (about pH 8.5) when dissolved in water, but remember when I said blood pH was hard to shift?

Screenshot from a BBC article, see http://www.bbc.co.uk/news/magazine-38650739

Well, it is, and for good reason. If blood pH moves above the range of 7.35-7.45 it causes a condition called alkalosis. This can result in low blood potassium which in turn leads to muscle weakness, pain, and muscle cramps and spasms. It can also cause low blood calcium, which can ultimately result in a type of seizure. Putting an alkaline solution directly into somone’s blood is genuinely dangerous.

And this is before we even start to consider the fact that someone who was not a medical professional was recommending, and even administering, intravenous drips. Which, by the way, he was reportedly charging his patients $550 a pop to receive.

Young came to the attention of the authorities several times, but always managed to wriggle out of trouble. That is, until 2014, when he was arrested and charged with practising medicine without a license and fraud. In February last year, he was found guilty, but a hung jury caused complications when they voted 11-1 to convict on the two medical charges, but deadlocked 8-4 on fraud charges.

Finally, at the end of June 2017, he was sentenced. He was given three years, eight months in custody, but due to the time he’s already spent in custody and under house arrest, he’s likely to actually serve five months in jail.

He admitted that he illegally treated patients at his luxury Valley Center ranch without any medical or scientific training. Perhaps best of all, he was also made to publicly declare that he is not microbiologist, hematologist, medical doctor or trained scientist, and that he has no post-highschool educational degrees from any accredited school.

Prosecuting Deputy District Attorney Gina Darvas called Young the “Wizard of pHraud”, which is rather apt. Perhaps the titles on his books could be edited to read “Robert O Young, pHraud”?


Like the Chronicle Flask’s Facebook page for regular updates, or follow @chronicleflask on Twitter. All content is © Kat Day 2017. You may share or link to anything here, including the images, but you must reference this site if you do.


All comments are moderated. Abusive comments will be deleted, as will any comments referring to posts on this site which have had comments disabled.

Alkaline water: if you like it, why not make your own?

Me* reading the comments section on the Amazing Alkaline Lemons post (*not actually me)

Alkaline water seems to be a trend at the moment. Not quite so much in the UK, yet, but more so in the US where it appears you can buy nicely-packaged bottles with the numbers like 8 and 9.5 printed in large, blue letters on their sides.

It’s rather inexplicable, because drinking slightly alkaline water does literally NOTHING for your health. You have a stomach full of approximately 1 M hydrochloric acid (and some other stuff) which has an acidic pH of somewhere between 1.5 and 3.5. This is entirely natural and normal – it’s there to kill any bugs that might be present in your food.

Chugging expensive water with an alkaline pH of around 9 will neutralise a bit of that stomach acid (bringing the pH closer to a neutral value of 7), and that’s all it will do. A stronger effect could be achieved with an antacid tablet (why isn’t it antiacid? I’ve never understood that) costing around 5p. Either way, the effect is temporary: your stomach wall contains special cells which secrete hydrochloric acid. All you’re doing by drinking or eating alkaline substances is keeping them busy.

(By the way, I’m not recommending popping antacids like sweeties – it could make you ill with something called milk-alkali syndrome, which can lead to kidney failure.)

Recently, a video did the rounds of a woman testing various bottled waters, declaring the ones with slightly acidic pHs to be “trash” and expressing surprise that several brands, including Evian, were pH neutral. The horror. (For anyone unsure, we EXPECT water to have a neutral pH.)

Such tests are ridiculous for lots of reasons, not least because she had tiny amounts of water in little iddy-biddy cups. Who knows how long they’d been sitting around, but if it was any length of time they could well have absorbed some atmospheric carbon dioxide. Carbon dioxide is very soluble, and it forms carbonic acid when it dissolves in water which, yes, would lower the pH.

Anyway, there’s absolutely nothing harmful about drinking water containing traces of acid. It doesn’t mean the water is bad. In fact, if you use an ion exchange filter (as found in, say, Brita filter jugs) it actually replaces calcium ions in the water with hydrogen ions. For any non-chemists reading this: calcium ions are the little sods that cause your kettle to become covered in white scale (I’m simplifying a bit). Hydrogen ions make things acidic. In short, less calcium ions means less descaling, but the slight increase in hydrogen ions means a lower pH.

So, filtered water from such jugs tends to be slightly acidic. Brita don’t advertise this fact heavily, funnily enough, but it’s true. As it happens, I own such a filter, because I live in an area where the water is so hard you can practically use it to write on blackboards. After I bought my third kettle, second coffee machine and bazillionth bottle of descaler, I decided it would be cheaper to use filtered water.

I also have universal indicator strips, because the internet is awesome (when I was a kid you couldn’t, easily, get this stuff without buying a full chemistry set or, ahem, knowing someone who knew someone – now three clicks and it’s yours in under 48 hours).

The pH of water that’s been through a (modern) ion-exchange filter tends to be slightly acidic.

The water in the glass was filtered using my Brita water filter and tested immediately. You can see it has a pH of about 5. The water straight from the tap, for reference, has a pH of about 7 (see the image below, left-hand glass).

The woman in the YouTube video would be throwing her Brita in the trash right now and jumping up and down on it.

So, alkaline water is pretty pointless from a health point of view (and don’t even start on the whole alkaline diet thing) but, what if you LIKE it?

Stranger things have happened. People acquire tastes for things. I’m happy to accept that some people might actually like the taste of water with a slightly alkaline pH. And if that’s you, do you need to spend many pounds/dollars/insert-currency-of-choice-here on expensive bottled water with an alkaline pH?

Even more outlandishly, is it worth spending £1799.00 on an “AlkaViva Vesta H2 Water Ionizer” to produce water with a pH of 9.5? (This gizmo also claims to somehow put “molecular hydrogen” into your water, and I suppose it might, but only very temporarily: unlike carbon dioxide, hydrogen is very insoluble. Also, I’m a bit worried that machine might explode.)

Fear not, I am here to save your pennies! You do not need to buy special bottled water, and you DEFINITELY don’t need a machine costing £1.8k (I mean, really?) No, all you need is a tub of….

… baking soda!

Yep, good old sodium bicarbonate, also known as sodium hydrogencarbonate, bicarb, or NaHCO3. You can buy a 200 g tub for a pound or so, and that will make you litres and litres and litres of alkaline water. Best of all, it’s MADE for baking, so you know it’s food grade and therefore safe to eat (within reason, don’t eat the entire tub in one go).

All you need to do is add about a quarter of a teaspoon of aforementioned baking soda to a large glass of water and stir. It dissolves fairly easily. And that’s it – alkaline water for pennies!

Me* unconvinced by the flavour of alkaline water (*actually me).

Fair warning, if you drink a lot of this it might give you a bit of gas: once the bicarb hits your stomach acid it will react to form carbon dioxide – but it’s unlikely to be worse than drinking a fizzy drink. It also contains sodium, so if you’ve been told to watch your sodium intake, don’t do this.

If I had fewer scruples I’d set up shop selling “dehydrated alkaline water, just add water”.

Sigh. I’ll never be rich.


Like the Chronicle Flask’s Facebook page for regular updates, or follow @chronicleflask on Twitter. All content is © Kat Day 2017. You may share or link to anything here, including the images, but you must reference this site if you do.


All comments are moderated. Abusive comments will be deleted, as will any comments referring to posts on this site which have had comments disabled.

Is acrylamide in your toast really going to give you cancer?

Acrylamide has been in the news today, and this might be the understatement of the year. Front page newspaper headlines have been yelling everything from “Brits officially warned off chips” to “Over-cooked potatoes and burnt toast could cause cancer” to the marginally more restrained “What is the real cancer risk from eating roast potatoes or toast?” All this has been accompanied by radio interviews with everyone from actual scientists to professional chefs to people keen to share their roast potato recipes. I expect there have been television interviews too – I haven’t had a chance to watch.

Hey, what could be more traditional, or more fun, than a food-health scare in January?

Acrylamide

Acrylamide

Never fear, the Chronicle Flask is here to sort out the science. Let’s get to the facts: what is acrylamide?

It’s actually a rather small molecule, and it falls into a group of substances which chemists call amides. Other well-known amides include paracetamol and penicillin, and nylon is a polyamide – that is, lots of amide molecules joined together. Amide linkages (the CO-NH bit) are a key feature of proteins, which means they appear in all kinds of naturally-occurring substances.

And this is where the food-acrylamide link comes in. Because acrylamide, or prop-2-enamide to give it its official name (the one only ever used by A-level chemistry students), forms when certain foods are cooked.

Acrylamide occurs naturally in fried, baked, and roasted starchy foods.

Acrylamide occurs naturally in fried, baked, and roasted starchy foods.

It begins with an amino acid called asparagine. If you’re wondering whether, with that name, it has anything to do with asparagus, you’d be on the right track. It was first isolated in the early 1800s from asparagus juice. It turns out to be very common: it’s found in dairy, meat, fish and shellfish, as well as potatoes, nuts, seeds and grains, amongst other things.

This is where the trouble begins. When asparagine is combined with sugars, particularly glucose, and heated, acrylamide is produced. The longer the food is heated for, the more acrylamide forms. This is a particular issue with anything wheat or potato-based thanks to the naturally-occurring sugars those foods also contain – hence all the histrionics over chips, roast potatoes and toast.

How dangerous is acrylamide? The International Agency for Research on Cancer have classified it as a Group 2A carcinogen, or a “probable” carcinogen. This means there’s “limited evidence” of carcinogenicity in humans, but “sufficient evidence” of carcinogenicity in experimental animals. In other words (usually) scientists know the thing in question causes cancer in rats – who’ve generally been fed huge amounts under strictly controlled conditions – but there isn’t any clear evidence that the same link exists in humans. It’s generally considered unethical to lock humans in cages and force feed them acrylamide by the kilo, so it’s tricky to prove.

screen-shot-2017-01-23-at-22-10-46At this point I will point out that alcoholic beverages are classified as Group 1 carcinogens, which means there is “sufficient evidence” of carcinogenicity in humans. Alcohol definitely causes cancer. If you’re genuinely concerned about your cancer risk, worry less about the roast potatoes in your Sunday roast and more about the glass of wine you’re drinking with them.

But back to acrylamide. In animals, it has been shown to cause tumours. It’s one of those substances which can be absorbed through the skin, and after exposure it spreads around the body, turning up in the blood, unexposed skin, the kidneys, the liver and so on. It’s also been shown to have neurotoxic effects in humans. BUT, the evidence that it causes cancer in humans under normal conditions isn’t conclusive. A meta-analysis published in 2014 concluded that “dietary acrylamide is not related to the risk of most common cancers. A modest association for kidney cancer, and for endometrial and ovarian cancers in never smokers only, cannot be excluded.” 

The dose makes the poison is an important principle in toxicology (image credit: Lindsay Labahn)

The dose makes the poison (image credit: Lindsay Labahn)

As I so often find myself saying in pieces like this: the dose makes the poison. The people who have suffered neurotoxic effects from acrylamide have been factory workers. In one case in the 1960s a patient was handling 10% solutions of the stuff, and “acknowledged that the acrylamide solution frequently had splashed on his unprotected hands, forearms and face.” The earliest symptom was contact dermatitis, followed by fatigue, weight loss and nerve damage.

Because of these very real risks, the Occupational Safety and Health Administration and the National Institute for Occupational Safety and Health have set occupational exposure limits at 0.03 mg/m3 over an eight-hour workday, or 0.00003 g/m3.

Let’s contrast that to the amount of acrylamide found in cooked food. The reason all this fuss erupted today is that the Food Standards Agency (FSA) published some work which estimated the amounts of acrylamide people are likely to be exposed to in their everyday diet.

The highest concentrations of acrylamide were found in snacks (potato crisps etc), and they were 360 μg/kg, or 0.00036 g/kg or, since even the most ardent crisp addict doesn’t usually consume their favoured snacks by the kilo, 0.000036 g/100g. (Remember that those occupational limits are based on continuous exposure over an eight-hour period.)

In other words, the amounts in even the most acrylamide-y of foodstuffs are really quite tiny, and the evidence that acrylamide causes cancer in humans is very limited anyway. There is some evidence that acrylamide accumulates in the body, though, so consuming these sorts of foods day in and day out over a lifetime could be a concern. It might be wise to think twice about eating burnt toast every day for breakfast.

Oh yes, and there’s quite a lot of acrylamide in cigarette smoke. But somehow I doubt that if you’re a dedicated smoker this particular piece of information is going to make much difference.

As the FSA say at the end of their report:

Your toast almost certainly isn't going to kill you.

Your toast almost certainly isn’t going to kill you.

“The dietary acrylamide exposure levels for all age classes are of possible concern for an increased lifetime risk of cancer. The results of the survey do not increase concern with respect to acrylamide in the UK diet but do reinforce FSA advice to consumers and our efforts to support the food industry in reducing acrylamide levels.”

This is not, I would suggest, QUITE the same as “Crunchy toast could give you cancer, FSA warns” but, I suppose, “FSA says risk hasn’t really changed” wouldn’t sell as many newspapers.

One last thing, there’s acrylamide in coffee – it forms when the beans are roasted. There’s more in instant coffee and, perhaps counterintuitively, in lighter-roasted beans. No one seems to have mentioned that today, possibly because having your coffee taken away in January is just too terrifying a prospect to even contemplate. And also perhaps because coffee seems to be associated with more health benefits than negatives. Coffee drinkers are less likely to develop type 2 diabetes, Parkinson’s disease, dementia, suffer fewer cases of some cancers and fewer incidences of stroke. Whether the link is causal or not isn’t clear, but coffee drinking certainly doesn’t seem to be a particularly bad thing, which just goes to show that when it comes to diet, things are rarely clearcut.

Pass the crisps, someone.


Like the Chronicle Flask’s Facebook page for regular updates, or follow @chronicleflask on Twitter. In need of a groovy new mug for your oh-so-healthy coffee? Check out this page.


All comments are moderated. Abusive comments will be deleted, as will any comments referring to posts on this site which have had comments disabled.

 

The Chronicles of the Chronicle Flask: 2016

2016 is limping to its painful conclusion, still tossing out last-minute nasty surprises like upturned thumb tacks in the last few metres of a marathon. But the year hasn’t been ALL bad. Some fun, and certainly interesting, things happened too. No, really, they did, honestly.

So with that in mind, let’s have a look back at 2016 for the Chronicle Flask….

January kicked off with a particularly egregious news headline in a well-known broadsheet newspaper: Sugar found in ketchup and Coke linked to breast cancer. Turns out that the sugar in question was fructose. Yes, the sugar that’s in practically everything, and certainly everything that’s come from a plant. So why did the newspaper in question choose ketchup and Coke for their headline instead of, oh, say, fruit juice or honey? Surely not just in an effort to sell a few more newspapers after the overindulgent New Year celebrations. Surely.

octarineThere was something more lighthearted to follow when IUPAC  verified the discoveries of elements 113, 115, 117 and 118. This kicked off lots of speculation about the elements’ eventual names, and the Chronicle Flask suggested that one of them should be named Octarine in honour of the late Sir Terry Pratchett. Amazingly, this suggestion really caught everyone’s imagination. It was picked up in the national press, and the associated petition got over 51 thousand signatures!

In February I wrote a post about the science of statues, following the news that a statue to commemorate Sir Terry Pratchett and his work had been approved by Salisbury City Council. Did you know that there was science in statues? Well there is, lots. Fun fact: the God of metalworking was called Hephaestus, and the Greeks placed dwarf-like statues of him near their Hearths – could this be where the fantasy trope of dwarves as blacksmiths originates?

MCl and MI are common preservatives in cosmetic products

MCl and MI are common preservatives in cosmetic products

My skeptical side returned with a vengeance in March after I read some online reviews criticising a particular shampoo for containing a substance known as methylchloroisothiazolinone. So should you be scared of your shampoo? In short, no. Not unless you have a known allergy or particularly sensitive skin. Otherwise, feel free to the pick your shampoo based on the nicest bottle, the best smell, or the forlorn hope that it will actually thicken/straighten/brighten your hair as promised, even though they never, ever, ever do.

Nature Chemistry published Another Four Bricks in the Wall in April – a piece all about the potential names of new elements, partly written by yours truly. The month also brought a sinus infection. I made the most of this opportunity by writing about the cold cure that’s 5000 years old. See how I suffer for my lovely readers? You’re welcome.

In May I weighed in on all the nonsense out there about glyphosate (and, consequently, learned how to spell and pronounce glyphosate – turns out I’d been getting it wrong for ages). Is it dangerous? Nope, not really. The evidence suggests it’s pretty harmless and certainly a lot safer than most of its alternatives.

may-facebook-postSomething else happened in May: the Chronicle Flask’s Facebook page received this message in which one of my followers told me that my post on apricot kernels had deterred his mother from consuming them. This sort of thing makes it all worthwhile.

In June the names of the new elements were announced. Sadly, but not really very surprisingly, octarine was not among them. But element 118 was named oganesson and given the symbol Og. Now, officially, this was in recognition of the work of Professor Yuri Oganessian, but I for one couldn’t help but see a different reference. Mere coincidence? Surely not.

July brought another return to skepticism. This time, baby wipes, and in particular a brand that promise to be “chemical-free”. They’re not chemical-free. Nothing is chemical-free. This is a ridiculous label which shouldn’t be allowed (and yet, inexplicably, is still in use). It’s all made worse by the fact that Water Wipes contain a ‘natural preservative’ called grapefruit seed extract which, experiments have shown, only actually acts as a preservative when it’s contaminated with synthetic substances. Yep. Turns out some of Water Wipes claims are as stinky as the stuff they’re designed to clean up.

Maria Lenk Aquatic Enter, Tuesday, Aug. 9, 2016. (AP Photo/Matt Dunham)

Maria Lenk Aquatic Enter, Tuesday, Aug. 9, 2016. (AP Photo/Matt Dunham)

August brought the Olympics, and speculation was rife about what, exactly, was causing the swimming pools to turn such strange shades of green. Of course, the Chronicle Flask knew the correct solution…

August also saw MMS and CD reared their ugly heads on social media again. CD (chlorine dioxide) is, lest we forget, a type of bleach solution which certain individuals believe autistic children should be made to drink to ‘cure’ them. Worse, they believe such children should be forced to undergo daily enemas using CD solutions. I wrote a summary page on MMS (master mineral solution) and CD, as straight-up science companion to the commentary piece I wrote in 2015.

mugsSeptember took us back to pesticides, but this time with a more lighthearted feel. Did you know that 99.99% of all the pesticides you consume are naturally-occurring? Well, you do if you regularly read this blog. The Chronicle Flask, along with MugWow, also produced a lovely mug. It’s still for sale here, if you need a late Christmas present… (and if you use the code flask15 you’ll even get a discount!)

In October, fed up with endless arguments about the definition of the word ‘chemical’ I decided to settle the matter once and for all. Kind of. And following that theme I also wrote 8 Things Everyone Gets Wong About ‘Scary’ Chemicals for WhatCulture Science.

Just in case that wasn’t enough, I also wrote a chapter of a book on the missing science of superheroes in October. Hopefully we should see it in print in 2017.

Sparklers are most dangerous once they've gone out.

Sparklers are most dangerous once they’ve gone out.

I decided to mark Fireworks Night in November by writing about glow sticks and sparklers. Which is riskier? The question may not be as straightforward as you’d imagine. This was followed by another WhatCulture Science piece, featuring some genuinely frightening substances: 10 Chemicals You Really Should Be Scared Of.

And that brings us to December, and this little summary. I hope you’ve enjoyed the blog this year – do tell your friends about it! Remember to follow @ChronicleFlask on Twitter and like fb.com/chronicleflask on Facebook – both get updated more or less daily.

Here’s wishing all my lovely readers a very Happy New Year – enjoy a drop of bubbly ethanol solution and be careful with the Armstrong’s mixture…. 

See you on the other side!

new-year-1898553_960_720

What’s all the fuss about glyphosate?

Glyphosate, the key ingredient in Monsanto’s weedkiller Roundup, has been in the news recently. A few weeks ago it was widely reported that a UN/WHO study had shown it was ‘unlikely to pose a carcinogenic risk to humans‘. But it then emerged that the chairman of the UN’s joint meeting on pesticide residues (who, incidentally, has the fabulous name of Professor Boobis) also runs the International Life Science Institute (ILSI). Which had received a $500,000 donation from Monsanto, and $528,500 from an industry group which represents Monsanto among others.

And then it transpired that there was going to be an EU relicensing vote on glyphosate two days after the (since postponed) UN/WHO report was released, which resulted in another outcry.

Glyphosate molecule

A molecule of glyphosate

So what is glyphosate, and why all the fuss?

It was first synthesized in 1950 by Swiss chemist Henry Martin. It was later, independently, discovered at Monsanto. Chemists there were looking at water-softening agents, and found that some of them also killed certain plants. A chemist called John E. Franz was asked to investigate further, and he went on to discover glyphosate. He famously received $5 for the patent.

Chemically, glyphosate is a fairly simple molecule. It’s similar in structure to amino acids, the building blocks of all proteins, in that it contains a carboxylic acid group (the COOH on the far right) and an amine group (the NH in the middle). In fact, glyphosate is most similar to the smallest of all amino acids, glycine. Where it deviates is the phosphonic group (PO(OH2)) on the left. This makes it a (deep breath) aminophosphonic analogue of glycine. Try saying that when you’ve had a couple of beers.

As is usually the way in chemistry, changing (or indeed adding) a few atoms makes a dramatic difference to the way the molecule interacts with living systems. While glycine is more or less harmless, and is in fact a key component of proteins, glyphosate is a herbicide.

This probably bears stressing. It’s a herbicide. Not an insecticide. A herbicide.

Crop spraying

Glyphosate is a herbicide, not an insecticide.

I say this because people often conflate the two – after all, they’re both chemicals you spray on plants, right? – but they are rather different beasts. Insecticides, as the name suggests, are designed to kill insects. The potential problem being that other things eat those creatures, and if we’re not careful, the insecticide can end up in places it wasn’t expected to end up, and do things it wasn’t expected to do. This famously happened with DDT, a very effective pesticide which unfortunately also had catastrophic effects on certain predatory birds when they ate the animals that had eaten the slightly smaller animals which had eaten the insects that had eaten the other insects (and so on) that had been exposed to the DDT.

Herbicides, on the other hand, kill plants. Specifically, weeds. They’re designed to work on the biological systems in plants, not animals. Often, they have no place to bind in animals and so are simply excreted in urine and faeces, unchanged. Also, since plants aren’t generally known for getting up and wandering away from the field in which they’re growing, herbicide sprays tend to stay more or less where they’re put (unless there’s contamination of waterways, but this can – and should, if the correct procedures are followed – be fairly easily avoided).

Nicotine pesticide

Nicotine is an effective insecticide. It’s also extremely toxic.

Now this is not to say we should be careless with herbicides, or that they’re entirely harmless to humans and other animal species, but we can cautiously say that, in general, they’re rather less harmful than insecticides. In fact, glyphosate in particular is less harmful than a lot of everyday substances. If we simply look at LD50 values (the amount of chemical needed to provide a lethal dose to half of a test population), glyphosate has an LD50 of 4900 mg/kg whereas, for comparison, table salt has an LD50 of 3000. Paracetamol (acetaminophen) has an LD50 of 338, and nicotine (a very effective insecticide, as well as being the active ingredient in cigarettes) has an LD50 of just 9.

Of course, there’s more to toxicity than just killing things, and that’s where it gets tricky. Yes, it might take more than a third of a kilo to kill you outright, but could a smaller amount, particularly over an extended period of time, have more subtle health effects?

But before we go any further down that rabbit hole, let’s take a look at that ‘smaller amount’. Certain campaigners (they always seem to have some sort of stake in the huge business that is organic food, ahem) would have us believe that food crops are ‘drenched’ in glyphosate, and that consumers are eating significant quantities of it every day.

Here’s a great graphic, made by Sarah Shultz of the Nurse Loves Farmer blog (reproduced with her kind permission), that answers this question nice and succinctly:

How much glyphosate?

How much glyphosate is sprayed on crops? (Reproduced with permission of Sarah Shultz)

It’s about 1 can of soda’s worth per acre. Or, if you find an acre hard to visualise, roughly ten drops for every one hundred square feet – the size of a smallish bedroom.

In other words, not a lot. It’s also worth remembering that although there is some pre-harvest spraying – particularly of wheat crops – no farmer is spraying their crops five minutes before harvest. What would be the point of that? Farmers have margins, just like any other business, and chemicals cost money. If you’re going to use them, you use them in the most efficient way you can. The point of spraying pre-harvest is to kill any weeds that might be present so that they don’t get into your harvest. This takes time to happen, so it’s done seven to fourteen days before harvesting takes place. It’s also carefully timed in the growing cycle. Once wheat turns yellow, it’s effectively dead – it’s neither photosynthesising nor transporting nutrients – so if it’s sprayed at this point, glyphosate isn’t moved from the plant into the grain of the wheat. Which means it doesn’t make it into your food.

The long and short of all this is that if there IS any glyphosate in food crops, it’s in the parts per billion range. So is that likely to be harmful?

In March 2015 the International Agency for Research on Cancer (IARC) – the cancer-research arm of the World Health Organisation – announced that glyphosate was ‘probably carcinogenic to humans’, or category 2A. It needs to be pointed out that this outcome was controversial, as this post by The Risk Monger explains. But even that controversy aside, lots of things fall into category 2A, for example smoke from wood-burning fires, red meat, and even shift work. The IARC did note that the evidence mainly involved small studies and concerned people that worked with glyphosate, not the general public, and that recommendations were partly influenced by the results of animal studies (really, go and read that Risk Monger post). The one large-cohort study, following thousands of farmers, found no increased risk.

And by the way, alcohol has been classified as a Group 1 carcinogen, meaning it’s definitely known to cause cancer in humans. If you’re worried about glyphosate in wine and beer, I respectfully suggest you have your priorities the wrong way round.

So, the tiny traces of glyphosate that might be on food definitely aren’t going to poison you or give you cancer. Are there any other health effects?

Gut bacteria

Glyphosate isn’t interfering with your gut bacteria (image: microbeworld.org)

One thing that the health campaigners like to talk about is gut health. Their logic, such as it is, follows that glyphosate passes though our body largely unchanged. Now, you might imagine this would be a good thing, but according to these particular corners of the internet, it’s exactly the opposite. Glyphosate is known to be anti-microbial, and since it’s not changed as it passes through the body, the argument goes that it gets into our guts and starts wiping out the microbes in our digestive system, which have been increasingly linked to a number of important health conditions.

It sort of makes sense, but does it have any basis in fact? Although glyphosate can act as an antimicrobial in fairly large quantities in a petri dish in a laboratory, it doesn’t have a significant effect in the parts per billion quantities that might make their way to your gut from food. Glyphosate prevents bacteria from synthesising certain essential amino acids (it does the same thing to plants; that’s basically how it works) but in the gut these bacteria aren’t generally synthesising those amino acids, because they don’t need to. The amino acids are already there in fairly large quantities; bacteria don’t waste energy making something that’s readily available. In short, glyphosate stops bacteria doing something they weren’t doing anyway. So no, no real basis in fact.

I have so far avoided mentioning GMOs, or genetically-modified organisms. “GMO” often gets muttered in the same breath as glyphosate because certain crops have been modified to resist glyphosate. If they weren’t, it would damage them, too. So the argument goes that more glyphosate is used on those crops, and if you eat them, you’ll be exposed to more of it. But, as I said earlier, farmers don’t throw chemicals around for fun. It costs them money. Plus, not-really-surprisingly-if-you-think-about-it, farmers are usually quite environmentally-conscious. After all their livelihood relies on it! Most of them use multiple, non-chemical methods to control weeds, and then just add the smallest amount of herbicide they can possibly get away with to manage the last few stragglers.

Ah, but even a little bit is too much, you say? Why not eat organic food? Then there will be absolutely no nasty chemicals at all. Well, except for the herbicides that are approved for use in organic farming, and all the other approved chemicals, famously copper sulfate and elemental sulfur, both of which are considerably more toxic than glyphosate by anyone’s measure. And, of course, organic food is much more expensive, and simply not a feasible way of feeding over seven billion people. Perhaps, instead of giving farmers a hard time over ‘intensive’ farming, we should be supporting a mixture of sustainable methods with a little bit of, safe, chemical help where necessary?

In summary, the evidence suggests that glyphosate is pretty safe. Consuming the tiny traces that might be present in food is not going to give you cancer, won’t cause some sort of mysterious ‘leaky gut’ and it’s definitely not to poison you. There is a lot of fuss about glyphosate, but it’s really not warranted. Have another slice of toast.


EDIT 2nd June 2016

After I wrote this post, a very interesting article came my way…

  • Petaluma city suspended use of glyphosate in favour of alternatives. Notable quote:“Having used the alternative herbicides over the past two months, DeNicola said crews have needed to apply the treatments more often to achieve similar results. The plants are also likely to regrow, since the root remains alive underground.The treatments are also said to be extremely pungent during application, with several workers complaining of eye irritation and one experiencing respiratory problems, DeNicola said. Those attributes have required the use of new protective equipment, something that was not required with Roundup.“It’s frustrating being out there using something labeled as organic, but you have to be out there in a bodysuit and a respirator,” he said.”

A classic example of almost-certainly unfounded fear leading to bad decision-making.


Follow The Chronicle Flask on Facebook and Twitter for regular updates and other interesting bits and pieces from around the internet.

No, ketchup does not cause cancer

ketchup and coke

Do these things really cause breast cancer? (Spoiler: no)

Less than two days into the new year, and I’d already found what might well be one of the silliest health headlines of the year. What is it I hear you ask? Well, it was in a national newspaper on New Years Day, and it was this:

Sugar found in ketchup and Coke linked to breast cancer

This, to borrow a favourite line from an online greetings card company, had me rolling my eyes so hard I could practically see my brain. Why? Because even without reading any further, I knew immediately that it was the equivalent of saying, “too much of thing found in most stuff might cause cancer!”

But let’s not be one of the 70% of users that only read the headline, let’s dig a little further. The newspaper article, which in fairness isn’t too bad – it’s just a bit of a silly headline, alludes to work carried out the University of Texas’ MD Anderson Cancer Centre. If you click on the link I’ve added back there, you’ll see that MD Anderson’s headline was:

“Sugar in Western diets increases risk for breast cancer tumors and metastasis”

Note, they just say ‘sugar’, not sugar in two apparently randomly-selected foodstuffs. The researchers divided mice into four groups, fed some a diet high in sucrose (more commonly called table sugar – in other words, the stuff in the sugar bowl) and compared them to others fed a low-sugar, ‘starch-controlled’ diet. They found that the high-sugar diet lead to increased tumour growth, particularly in mammary glands.

I’ve covered forms of sugar before but still, here’s a quick reminder before we go any further: this is a molecule of sucrose:

Saccharose2

Sucrose

Sucrose is made of two ‘bits’ joined together: one unit of fructose and one unit of glucose.

157px-Alpha-D-Glucopyranose

Glucose

These two molecules are what chemists call isomers. They contain the same number and type of atoms, just joined up differently. They’re both sugars in and of themselves. Glucose is used directly by cells in your body for energy. Fructose, on the other hand, is trickier. It has a lower glycemic index than glucose, in other words, it doesn’t raise your blood sugar as rapidly as glucose, but this doesn’t mean it’s healthier. It’s metabolised almost exclusively in the liver and, long story short, invariably ends up being converted into, and stored as, fat.

179px-Beta-D-Fructofuranose

Fructose

Fruit is high in fructose, and fructose tastes very sweet to us (sweeter than either glucose or sucrose). This is nature’s way of telling us, and other animals that might eat the fruit, that it’s high in nutrients. From the plant’s point of view, it’s an incentive to eat the fruit and, ahem, spread the seeds around.

Humans have, of course messed around with this perfectly sensible survival mechanism by stuffing all kinds of easily-available and not particularly nutrient-rich foods with fructose, and herein lies the problem. Co-author of the paper that started all this, Lorenzo Cohen, Ph.D., professor of Palliative, Rehabilitation, and Integrative Medicine, said “we determined that it was specifically fructose, in table sugar and high-fructose corn syrup […] which was responsible for facilitating lung metastasis and 12-HETE production in breast tumors.” Notice that he mentions fructose in table sugar; this is because, once you eat sucrose, it breaks down into units of glucose and fructose.

The article goes on to suggest that sugar-sweetened beverages are a significant problem, so was the newspaper wrong to pick on Coke? It’s a popular drink after all, and a standard can of Coca-Cola contains approximately 35 grams of sugar (which might come from either sucrose or high fructose corn syrup mainly depending on where you buy it). The guidance for adults is no more than 30 grams of sugar per day, so a single can of regular Coca-Cola would take you over that limit, and it’s very easy to drink two or even three cans without giving it a second thought.

sugar

Soft drinks and fruit juice both contain a lot of sugar

However, the same goes for pretty much any non-diet soft drink.  Pepsi, for example, has a similar amount. Lemonade can be even more sugary, with some drinks hitting 40 grams per 330 ml can. Ginger beer might well be the worst; there are 53 grams per 330 ml in Old Jamaica Ginger beer for example. Fruit juice is no better, with many juices containing 35 g of sugar per 330 ml, although at least fruit juice might contain some other nutrients such as vitamin C.

So really, I’d say it’s a bit unfair to single out Coke in a headline like this.

What about the ketchup (note they didn’t pick a specific brand here, just generic ‘ketchup’)?

Well, ketchup IS high in sugar. It contains about 24 grams of sugar per 100 grams. But hang on, 100 grams of ketchup is quite a lot. A more realistic serving size of a tablespoon is only about 15 grams, which works out at about 3.5 grams of sugar. Still quite a lot, but probably a drop in the ocean compared to all the sugar in cake, bread, drinks, fruit juice, breakfast cereals and the tubs of Roses and Quality Street you scoffed over Christmas. Unless you make a habit of drinking ketchup by the bottle (apparently some people do) this is frankly a ridiculous foodstuff to pick on.

I imagine that someone did a quick search for ‘foods that contain fructose’ and picked Coke because, well, everyone knows that Coke’s bad, right? So that sounds credible. And ketchup because we all sort of suspect it’s probably not that healthy, but it hasn’t been the subject of a health scare recently so that makes it stand out. Great clickbait, bad science.

mouse

Mice are not people

Plus, let’s be absolutely clear, the study was in mice. Mice are not people. While a study that shows an effect in mice is an interesting start, and may well be good reason to conduct more studies, quite possibly in humans, it’s not proof that this mechanism exists in humans. Humans have, after all, evolved to eat a very different diet to mice. There might well be a link, but this doesn’t prove it, and even if a link does exist we certainly can’t say anything about the significance or size of it from this research.

I’m not a dietician, but I’m going to go out on a (fairly sturdy) limb here and say that cutting back on sugar will not do you any harm and is likely to be a jolly good thing. Let’s also be clear that sugar in fruit juice, agave, honey etc is still sugar and is no healthier than table sugar. Eating too much of the sweet stuff is almost definitely bad for your waistline and, as we all learned as children, bad for your teeth too – something which is often overlooked but really shouldn’t be, poor dental health having been linked to other serious health problems including diabetes and heart disease.

ketchup on bread

Maybe cut back on the fried ketchup sandwiches

But, and here’s my big problem with the newspaper’s headline, none of this means that Coke and ketchup directly cause breast cancer which is how, I fear, some people will interpret it. Cut out sugary fizzy drinks by all means, and perhaps ditch the ketchup sandwiches (especially fried ones), but please don’t worry that the occasional dollop of red sauce is going to kill you. I’m pretty certain it won’t.

Follow The Chronicle Flask on Facebook for regular updates.

A small edit was made on 6th January to clarify that pure fructose isn’t used as an ingredient in Coke, but rather high fructose corn syrup.