Freezing fungal farts: what is hair ice and why does it form?

Hair ice, in which ice crystals grow in thread-like structures, can be found at northerly latitudes in broadleaf forests [image source]

I’ve written about water before and in particular, if you’ve been paying very close attention, you might remember that November 12th marks the anniversary of the day, in 1783, that Antoine Lavoisier formally declared water to be a compound rather than an element.

Which means that November is always an excellent time to talk about water. But this time, I’m going to focus on its solid state: ice.

A few days ago I stumbled across some beautiful images of hair ice, which prompted me to make a #272sci Twitter post (keep an eye on that hashtag for similar small bits of interesting science). The story behind hair ice is a fascinating one, and not something I could truly cover in 272 characters – so here’s the slightly longer version…

This form of ice is found on dead wood, and it has a few other names, including ice wool or frost beard. Of course, ice naturally forms at 0 ℃ at standard atmospheric pressure, but the form we’re most familiar with looks, to the naked eye at least, rather more random. In fact, it was snowing here just yesterday, which means I have photos!

Ice crystals on a wall in Oxfordshire, UK, in November 2021

As you can (hopefully) see, there’s some regularity to the individual crystals, but they’re sort of growing all over the place. So, how do ice crystals form, and why?

We need to start with the structure of water. Now, you might imagine that a molecule with the formula H2O would have its atoms arranged in a straight line, like this: H–O–H. But it doesn’t, and the reason it doesn’t is that the oxygen atom in the middle has two pairs of electrons which aren’t involved in bonding – which chemists call ‘lone pairs‘.

Imagine, for a moment, that you have a bunch of balloons made up of two sausage-shaped balloons and two round ones, all attached at the neck. What shape would they make, as a whole? Probably, the two long balloons would form a sort of rough V, and the two round ones would stick out, opposite each other.

If you have some balloons to hand, give it a try. It turns out this is actually a pretty good model for water. We end up with a roughly tetrahedral shape, with oxygen in the middle, hydrogen atoms in two of the corners, and the lone pairs in the other two corners.

The H2O atoms in a water molecule adopt a sort of shallow V shape but, if you consider the lone pairs, the molecule actually forms a rough tetrahedron [image source]

This is important because those lone pairs don’t just sit around doing nothing. The element oxygen is very electronegative, which means it likes to attract bonded electrons. Hydrogen, by contrast, is more electropositive, which essentially means it doesn’t.

The result of this is that, although it is very definitely a covalently-bonded molecule (and not made up of ions), the oxygen atom in water has a partially negative charge, while the hydrogens have a partially-positive charge.

Since positive charges attract negative charges, and since molecules don’t exist in isolation. The result is that the hydrogen atoms in one water molecule are attracted to the oxygens in other water molecules. This is called hydrogen bonding.

If your head is spinning as you try to imagine this, take a look at the image below. White is hydrogen, red is oxygen, and the dashed lines represent the attractions between partially-positive hydrogens and partially-negative oxygens.

Do you see the shapes that form? Yes – hexagons!

When water molecules pack together they form hexagonal shapes [image source]

And how many sides does a snowflake have? Yes – six!

It’s not a coincidence: as the temperature drops, molecules that previously had freedom of movement gradually stop moving so much and pack into these hexagonal shapes. Then, water vapour in the air deposits onto this skeleton and, voilà, we end up with six-sided ice crystals.

Now, normally, this happens fairly randomly. Yes, all the snowflakes are hexagonal (and there are images of the different patterns that can form in this graphic from Compound Interest) but, as my photos of ice crystals suggest, they tend to stick out in all directions.

Hair ice is different. The ‘hairs’ appear at what are called wood rays, that is, lines perpendicular to the growth rings of the wood, and it turns out that if a piece of wood forms hair ice once, it will probably keep producing it – which makes things rather easier for the potential photographer!

Each of the hairs is about 0.02 mm thick and, assuming the temperature doesn’t rise above freezing, they can hang around for hours and even days.

Why does hair ice grow in single, curling strands, rather than forming this more typical ‘bushy’ structure?

Which leads to the question: why don’t more ice crystals grow on top of the threads and break up the hair-like structures? After all, if it’s cold enough for ice, it ought to be cold enough for, well, more ice – oughtn’t it?

A quick aside: you’ve probably heard of Alfred Wegener, discoverer of continental drift – an idea that ultimately led to modern tectonic plate theory. These days, those ideas are pretty universally accepted, but when Wegener first proposed continental drift in 1912, he faced a lot of opposition. There was more than one reason for this, but one major one was that Wegener was seen as an outsider to the field of geophysics. His background was in meteorology and polar research. In other words, he spent a lot of time in cold weather conditions.

Which brings me back to the main, ah, thread (sorry). Alfred Wegener described hair ice on wet dead wood in 1918, having observed it the year before, and suggested that mycelium, the thread-like part of a fungal colony, could be involved. He thought this because he could actually see mycelium on the branch surface, which was confirmed by his consultant, Arthur Meyer. Meyer, however, was unable to definitely identify the fungal species at the time.

Some years later, in 1975, scientists named Mühleisen and Lämmle actually managed to grow hair ice on rotten wood in a climate chamber and later still, in 2005, the physicist Gerhart Wagner again suggested that a fungus was involved, although he had no knowledge of Wegener’s observations when he first did so. He went on to carry out experiments with Christian Mätzler in which they were able to reliably grow hair ice on a balcony on nights with freezing conditions.

A photo of hair ice taken in British Columbia, Canada, by Tiarra Friskie

After lots of painstaking (and cold!) observation, they concluded two things: firstly, hair ice forms from water stored in the wood, not atmospheric water – which goes some way to explaining why the structures aren’t more random, as you’d expect if the ice were forming from water vapour in the air.

Secondly, the fungus, as a product of its metabolism, was generating gas pressure, and that was pushing water through the wood rays to the wood surface, where it was fanning out into fine, curling strands.

So, yes, in a way, hair ice is the product of freezing fungal farts. (Yes, yes, very tenuous, but I couldn’t resist ‘freezing fungal farts’, let me have this one.)

There’s a much more scientific explanation in this 2015 paper, the full text of which is freely available online (lots of great photos too!). The culprit turns out to be a fungus called Exidiopsis effusa. Inside the wood, attractions between the water molecules and the wood surface lower the melting point of water slightly, keeping it liquid. Products of wood decomposition left by the fungus also (probably) help to prevent ice forming inside the wood itself.

Once the outside temperature drops, though, the formation of ice crystals on the outer surface of the wood has the effect of drawing out more water, and the result is that the crystals grown in long, thread-like structures – although the fine details of how the fungus does what it does are still a bit of a mystery. Still, it’s nice to find a not-quite-answered science question, isn’t it?

More hair ice in the wild, by Tiarra Friskie

One final thing: just in case you were thinking, oh, come on, is that first picture really real? On the Chronicle Flask Facebook page, a user named Tiarra Friskie commented that they had pictures of this very phenomenon, taken in British Columbia, Canada, and kindly gave me permission to use them. So, here you are: a tiny bit meltier than the picture above, but nevertheless, two guaranteed genuine photographs of hair ice!

If you live somewhere in the vicinity of the latitudes between 45 and 55 °N (which includes most of the UK, by the way), keep an eye out for rotten wood in your local broadleaf forest – if the weather gets cold enough, you might just spot some hair ice yourself.


A little admin note: the chronicle flask blog is now (yikes) almost nine years and 150 posts old. Life is increasingly busy and so, after December 2021, I’m going to stop making monthly updates. But not to worry! You can still follow the Twitter hashtag #272sci for regular tiny pieces of science, and I’ll pop back every now and then. Oh, and please do consider supporting the Great Explanations book project here!

Plus, why not take a look at my fiction blog: the fiction phial? And you can also find me doing various flavours of editor-type-stuff at the horror podcast, PseudoPod.org – so head over there, too!

Content is © Kat Day 2021. You may share or link to anything here, but you must reference this site if you do. You can support my writing my buying a super-handy Pocket Chemist from Genius Lab Gear using the code FLASK15 at checkout (you’ll get a discount, too!) or by buying me a coffee – just hit this button:
Buy Me a Coffee at ko-fi.com

 

Brilliant Bee Chemistry!

20th May is World Bee Day, the aim of which is to raise awareness of the importance of bees and beekeeping. So, hey, let’s do that!

I’m helped this month by my horticulturist* dad who, while working in a public garden recently, discovered this honeybee swarm in a honeysuckle. (Me: “what sort of tree is that?” Dad: “a winter flowering Honeysuckle lonicera. It’s a shrub, not a tree!” Yes, despite his tireless efforts I’m still pretty clueless about plants.)

Now, Dad knows what he’s doing in such situations. He immediately called the professionals. One does not mess around with (or ignore) a swarm of bees – one finds a beekeeper, stat. Obviously bees can sting, but they’re also endangered and they need to be collected to protect them. Should you find yourself in such a situation, you can find someone local via the British Beekeepers Association website.

That out of the way, aren’t they gorgeous? A swarm like this is a natural phenomenon, that happens when new queen bees are born and raised in the colony. Worker bees stop feeding the old queen – because a laying queen is too heavy to fly – and then in time she leaves with a swarm. They cluster somewhere, as you see in the photo, while scout bees go looking for a new location to settle. Bees in swarms only have the honey or nectar in their stomachs to keep them going, so they’ll starve if they don’t find a new home, and nectar, quickly.

This is all fascinating, of course, but what does it have to do with chemistry? Well, quite a bit, because bees are brilliant chemists. Really!

Ethyl oleate is an ester and an important chemical for bees (image source)

Firstly, despite what DreamWorks might have taught us, bees don’t have vocal cords, and they don’t sound like Jerry Seinfeld. A lot of their communication is chemical-based (actually, it turns out this is a topic of hot debate in bee circles, but since this is a chemistry blog, I’m not doing waggle dances. No, not even if you ask nicely).

As you might imagine, there are multiple chemicals involved, and I won’t go into all of them. Many are esters, which are known for their sweet, fruity smells, and which are also (at least, the longer-chain ones) the building blocks of fats.

One such chemical is ethyl oleate which plants produce and which, interestingly, we humans also make in our bodies when we drink alcohol. Forager bees gather ethyl oleate and carry it in their stomachs, and they then feed it to worker bees. It has the effect of keeping those workers in a nurse bee state and prevents them from maturing into forager bees too early. But, as forager bees die off, less ethyl oleate is available, and this “tells” the nurse bees to mature more quickly – so the colony makes more foragers. Clever, eh?

In this situation, ethyl oleate is acting as a pheromone, in other words, a substance that triggers a social response in members of the same species. Another example is Nasonov’s pheromone, which is a mixture of chemicals including geraniol (think fresh, “green” smell), nerolic acid, geranic acid (an isomer of nerolic acid) and citral (smells of lemon).

The white gland at the top of the honeybee’s abdomen releases pheromones which entice the swarm to an empty hive (image source)

An interesting aside: geranic acid has been investigated as an antiseptic material. It can penetrate skin, and has been shown to help the delivery of transdermal antibiotics, which are being investigated partly as a solution to the problem of antibiotic resistance. Nature is, as always, amazing.

Anyway, worker bees (which, again contrary to DreamWorks’ narrative, are female) release Nasonov’s pheromone to orient returning forager bees (also female) back to the colony. They do this by raising up their abdomens and fanning their wings. Beekeepers can use synthetic Nasonov pheromone, sometimes mixed with a “queen bee pheromone” to attract honeybee swarms to an unoccupied hive or swarm-catching box.

As my Dad chatted to the beekeepers (partly on my insistence – I was on the other end of my phone texting questions and demanding photos) one substance they were particularly keen to mention was “the alarm pheromone,” which “smells of bananas.”

Ooh, interesting, I thought. Turns out, this is isoamyl acetate, which is another ester. In fact, depending on your chemistry teacher’s enthusiasm for esters, you might even have made it in school – it forms when acetic acid (the vinegary one) is combined with 3-methylbutan-1-ol (isoamyl alcohol).

Never eat a banana by a bee.

Isoamyl acetate is used to give foods a banana flavour and scent. But, funnily enough, actual bananas you buy in the shops today don’t contain very much of it, the isoamyl acetate-rich ones having been wiped out by a fungal plague in the 1990s. This has lead to the peculiar situation of banana-flavoured foods tasting more like bananas than… well… bananas.

Modern bananas can still be upset bees, though. There are numerous stories of unwary individuals who walked too close to hives while eating a banana and been attacked. So, top tip: if you’re going on a picnic, leave the bananas (and banana-flavoured sweets, milkshakes etc) at home.

The reason is that banana-scented isoamyl acetate is released when honeybees sting. They don’t do this lightly, of course, since they can’t pull out the barbed stinger afterwards, and that means the bee has to leave part of its digestive tract, muscles and nerves embedded in your skin. It’s death for the bee, but the act of stinging releases the pheromone, which signals other bees to attack, attack, attack.

One bee sting might not deter a large predator, but several stings will. Multiple bee stings can trigger a lethal anaphylactic reaction, known allergy or not. So although utilising their stingers causes the death of a few (almost certainly infertile) bees, the rest of the colony (including the fertile individuals) is more likely to survive. From an evolutionary perspective it’s worth it – genes survive to be passed on.

Isoamyl acetate

Isoamyl acetate is an ester that smells of bananas, and is an alarm pheremone for bees (image source)

Moving on, I obviously can’t write a whole blog post about bees and not mention honey! We take it for granted, but it’s amazingly complicated. It contains at least 181 different substances, and nothing human food scientists have been able to synthesise quite compares.

In terms of sugars, it’s mostly glucose and fructose. Now, I’ve written about sugars extensively before, so I won’t explain them yet again, but I will just reiterate my favourite soap-box point: your body ultimately doesn’t distinguish between “processed” sugars in foods and the sugars in honey. In fact, one might legitimately argue that honey is massively processed, just, you know, by bees. So, you want to cut down on your sugar intake for health reasons? Sorry, but honey needs to go, too.

Honey is actually a supersaturated solution. In very simple terms, this means there’s an excess of sugar dissolved in a small amount of water. One substance which bees use to achieve this bit of clever chemistry is the enzyme, invertase, which they produce in their salivary glands. Nectar contains sucrose (“table sugar”) and, after the bees collect nectar, invertase helps to break it down into the smaller molecules of glucose and fructose.

“Set” honey is honey that’s been crystallised in a controlled way.

That’s only the beginning, though. There are lots of other enzymes involved. Amylase breaks down another sugar, amylose, into glucose. And glucose oxidase breaks down glucose and helps to stabilise the honey’s pH. One of the molecules produced in the reaction with glucose oxidase produces is hydrogen peroxide, which yet another enzyme, catalase, further breaks down into water and oxygen.

Bees regurgitate and re-drink nectar (yes, I suggest you don’t overthink it) over a period of time, which both allows the sugar chemistry to happen and also reduces the water content. When it’s about one-fifth water, the honey is deposited in the honeycomb, and the bees fan it with their wings to speed up the evaporation process even further. They stop when it’s down to about one-sixth water.

As I said a moment ago, honey is a supersaturated solution, and that means it’s prone to crystallising. This isn’t necessarily bad, in fact, “set” honey (my personal favourite) is honey which has been crystallised in a controlled way, so as to produce fine crystals and a creamy (rather than grainy) product.

The formation of a new honeycomb.

The potential problem with crystallisation is that once the sugar crystals fall out of solution, the remaining liquid has a higher-than-ideal percentage of water. This can allow microorganisms to grow. In particular, yeasts can take hold, leading to fermentation. Honey left on the comb in the hive tends not to crystallise, but once it’s collected and stored, there’s a greater chance that some particle of something or other will get in there and trigger the process. It helps to store it somewhere above room temperature. And honey is naturally hygroscopic, which means it absorbs water. So store it somewhere dry. In short, never put honey in the fridge.

Speaking of yeast and heat, heating changes honey and makes it darker in colour, thanks to the Maillard reaction. Commercial honey is often pasteurized to kill any yeast, which improves its shelf life and produces a smoother product. Also, because honey is naturally slightly acidic (around pH 4), over time the amino acids within in start to break down and this also leads to a darkening of the colour.

One more important safety concern: honey, even when pasteurized, can contain bacteria that produce toxins in a baby’s intestines and lead to infant botulism. So, never give children under one honey. It’s not a risk for older children (and adults) thanks to their more mature digestive systems.

T

Back to Dad’s bees! They were collected in a transport box by two local experts, Sharon and Ian. The bees march into the box two-by-two, wafting Nazonov’s pheromone to signal that this is home. From there, they were safely transferred to a new, wooden hive.

There’s only one way to finish this post, I think, and that’s with one of my all-time favourite Granny Weatherwax moments:

‘Your bees,’ she went on, ‘is your mead, your wax, your bee gum, your honey. A wonderful thing is your bee. Ruled by a queen, too,’ she added, with a touch of approval.

‘Don’t they sting you?’ said Esk, standing back a little. Bees boiled out of the comb and overflowed the rough wooden sides of the box.

‘Hardly ever,’ said Granny. ‘You wanted magic. Watch.’

Happy World Bee Day, everyone and, as always, GNU Terry Pratchett.


* Dad was unsure about the label “horticulturist” but I pointed out that the definition is an expert in garden cultivation and management, particularly someone’s who’s paid for their work. All of which he is. He replied wryly that, “x is an unknown quantity, and a spurt is a long drip.” Love you, Dad x 😄


If you’re studying chemistry, have you got your Pocket Chemist yet? Why not grab one? It’s a hugely useful tool, and by buying one you’ll be supporting this site – it’s win-win! If you happen to know a chemist, it would make a brilliant stocking-filler! As would a set of chemistry word magnets!

Like the Chronicle Flask’s Facebook page for regular updates, or follow @chronicleflask on Twitter. Content is © Kat Day 2021. You may share or link to anything here, but you must reference this site if you do. If you enjoy reading my blog, and especially if you’re using information you’ve found here to write a piece for which you will be paid, please consider buying me a coffee through Ko-fi using the button below.
Buy Me a Coffee at ko-fi.com

Want something non-sciency to distract you from, well, everything? Why not check out my fiction blog: the fiction phial.

 

The Chronicles of the Chronicle Flask: 2020

It’s officially time to put 2020 in the bin! Hurrah! And that means it’s time for a round-up of everything on this blog from the last twelve months. It’s not all COVID-19 related, I promise…

Mystery purple crystals

January began with a mystery, about some strange, blueish-purple crystals that were found under a sink. What were they? Well, if you missed it, or you’ve just forgotten, the answer is here

I had no idea at the time, but February was the calm before the storm. I was cheerfully talking about the Pocket Chemist. Have you got one? The post has a discount code, and they’re amazingly useful things. Especially if you’re studying from home…

Everything kicked off in March, and back in those early days everyone was all about the hand-washing. It may not be the burniest or the flashiest, but soap chemistry is some of the oldest chemistry we know. Oh, yes, and wash your hands. Properly.

We were all home learning in April. Or trying to, at least. Lots of chemists started messing about with stuff at home in particular, @CrocodileChemist (aka Isobel Everest give her a follow) created some gorgeous art with home-made indicators. I wrote all about an easy version, made with the classic: red cabbage.

Red cabbage indicator with various household substances

May featured pyrotechnics. Well, everything was on fire, so it seemed apt. Also, it was the thirtieth anniversary of the publication of the novel, Good Omens.

It was back to COVID-19 science in June, because everyone was talking about dexamethasone a well-known, readily available and, crucially, cheap steroid that has been shown to help patients with the most severe symptoms. Want to know more about its history? Check out the post.

By July nothing was over, but we’d definitely all had enough. So it was time to talk about something completely different. What better than a post all about sweet things, to mark national lollipop day?

In August the folks at Genius Lab Gear sent me an awesome set of Science Word Magnets. Do you need a set of these for when you finally make it back to a whiteboard? Check out this post for a discount code

September was all about skin chemistry

There’s evidence that low vitamin D levels are correlated with worse COVID-19 outcomes and, in the UK, we can’t make it in our skin in the winter months so September was all about vitamin D. Want to know more? Read all about sunshine and skin chemistry.

It’s Mole Day on the 23rd of October, so I did some ridiculous and, frankly, slightly disgusting calculations. Did you know that if we drained the blood out of every, single human on the planet, we’d only have about half a mole of red blood cells? You do now.

In November I went back to cleaning chemistry. Well, we had all been stuck at home for a while. This time, it was ovens. Why is cleaning ovens such hard work? Why do we use the chemicals we use? I explained all that. Read on!

Annnnd that brings us to December, and the STEM Heroes Colouring Book — a project I’m super proud to be a part of. So, hey, there’s been some good stuff!

Here’s to the end of 2020, and let’s hope that 2021 brings us some good things. It has to, surely? January traditionally brings a health scare, but no one’s doing that in 2021, are they? Are they? I guess we’ll find out soon… lots of love to everyone, stay safe, and stay well!


Like the Chronicle Flask’s Facebook page for regular updates, or follow @chronicleflask on Twitter. Content is © Kat Day 2021. You may share or link to anything here, but you must reference this site if you do. If you enjoy reading my blog, please consider buying me a coffee through Ko-fi using the button below.
Buy Me a Coffee at ko-fi.com