Absurd alkaline ideas – history, horror and jail time

I’ve written about the absurdity of alkaline diets before, and found myself embroiled in more than one argument about the idea.

To sum up quickly, it’s the notion that our bodies are somehow “acidic”, and if only we could make them “alkaline” all our health problems – cancer included – would disappear. The way you make your body “alkaline” is, mainly, by eating lots of vegetables and some fruits (particularly citrus fruits – yes, I know, I know).

The eating fruit and vegetables bit aside (they’re good for you, you should eat them), it’s all patent nonsense. Our bodies aren’t acidic – well, other than where they’re supposed to be acidic (like our stomachs) – and absolutely nothing we eat or drink can have any sort of effect on blood pH, which is kept firmly between 7.35-7.45 by (mainly) our lungs and kidneys. And if your kidneys or lungs are failing, you need something a little stronger in terms of medical intervention than a slice of lemon.

But who first came up with this crazy idea?

Claude Bernard carried out experiments on rabbits.

Actually, we can probably blame a nineteenth century French biologist and physiologist, Claude Bernard, for kicking the whole thing off, when he noticed that if he changed the diet of rabbits from largely plant-based to largely animal-based (i.e. from herbivorous to carnivorous) their urine became more acidic.

This observation, followed by a lot of speculation by nutritionists and some really quite impressively dodgy leaps of reasoning (by others, I should stress – not Bernard himself), has lead us to where we are now: umpty-million websites and books telling anyone who will listen that humans need to cut out all animal products to avoid becoming “acidic” and thus ill.

Bernard’s rabbits were, it seems, quite hungry when he got them – quite possibly they hadn’t been fed – and he immediately gave them boiled beef and nothing else. Meat contains the amino acids cysteine and methionine, both of which can produce acid when they’re metabolised (something Bernard didn’t know at the time). The rabbits excreted this in their urine, which probably explains why it became acidic.

Now, many of you will have noticed several problems here. Firstly, rabbits are herbivores by nature (they do not usually eat meat in the wild). Humans aren’t herbivores. Humans are omnivores, and we have quite different digestive processes as a result. It’s not reasonable to extrapolate from rabbits to humans when it comes to diet. Plus, even the most ardent meat-lover probably doesn’t only eat boiled beef – at the very least people usually squeeze in a battered onion ring or a bit of coleslaw along the way. Most critically of all, urine pH has no direct relationship with blood pH. It tells us nothing about the pH of “the body” (whatever we understand that to mean).

The notion that a plant-based diet is somehow “alkaline” should really have stayed in the 19th century where it belonged, and at the very least not limped its way out of the twentieth. Unfortunately, somewhere in the early 2000s, a man called Robert O Young got hold of the idea and ran with it.

Young’s books – which are still available for sale at the time of writing – describe him as “PhD”, even though he has no accredited qualification.

Boy, did he run with it. In 2002 he published a book called The pH Miracle, followed by The pH Miracle for Diabetes (2004), The pH Miracle for Weight Loss (2005) and The pH Miracle Revised (2010).

All of these books describe him either as “Dr Robert O Young” or refer to him as “PhD”. But he has neither a medical qualification nor a PhD, other than one he bought from a diploma mill – a business that offers degrees for money.

The books all talk about “an alkaline environment” and state that so-called acidic foods and drinks (coffee, tea, dried fruit, anything made with yeast, meat and dairy, amongst other foodstuffs) should be avoided if not entirely eliminated.

Anyone paying attention will quickly note that an “alkaline” diet is basically a very restrictive vegan diet. Most carbohydrate-based foods are restricted, and lots of fruits and nuts fall into the “moderately” and “mildly” acidic categories. Whilst a vegan diet can be extremely healthy, vegans do need to be careful that they get the nutrients they need. Restricting nuts, pulses, rice and grains as well as removing meat and dairy could, potentially, lead to nutritional deficiencies.

Young also believes in something called pleomorphism, which is a whole other level of bonkers. Essentially, he thinks that viruses and bacteria aren’t the cause of illnesses – rather, the things we think are viruses and bacteria are actually our own cells which have changed in response to our “acidic environments”. In Young’s mind, we are making ourselves sick – there is one illness (acidosis) and one cure (his alkaline diet).

It’s bad enough that he’s asserting such tosh and being taken seriously by quite a lot of people. It’s even worse that he has been treating patients at his ranch in California, claiming that he could “cure” them of anything and everything, including cancer.

One of his treatments involved intravenous injections of solutions of sodium hydrogen carbonate, otherwise known as sodium bicarbonate or baking soda. This common cookery ingredient does produce an alkaline solution (about pH 8.5) when dissolved in water, but remember when I said blood pH was hard to shift?

Screenshot from a BBC article, see http://www.bbc.co.uk/news/magazine-38650739

Well, it is, and for good reason. If blood pH moves above the range of 7.35-7.45 it causes a condition called alkalosis. This can result in low blood potassium which in turn leads to muscle weakness, pain, and muscle cramps and spasms. It can also cause low blood calcium, which can ultimately result in a type of seizure. Putting an alkaline solution directly into somone’s blood is genuinely dangerous.

And this is before we even start to consider the fact that someone who was not a medical professional was recommending, and even administering, intravenous drips. Which, by the way, he was reportedly charging his patients $550 a pop to receive.

Young came to the attention of the authorities several times, but always managed to wriggle out of trouble. That is, until 2014, when he was arrested and charged with practising medicine without a license and fraud. In February last year, he was found guilty, but a hung jury caused complications when they voted 11-1 to convict on the two medical charges, but deadlocked 8-4 on fraud charges.

Finally, at the end of June 2017, he was sentenced. He was given three years, eight months in custody, but due to the time he’s already spent in custody and under house arrest, he’s likely to actually serve five months in jail.

He admitted that he illegally treated patients at his luxury Valley Center ranch without any medical or scientific training. Perhaps best of all, he was also made to publicly declare that he is not microbiologist, hematologist, medical doctor or trained scientist, and that he has no post-highschool educational degrees from any accredited school.

Prosecuting Deputy District Attorney Gina Darvas called Young the “Wizard of pHraud”, which is rather apt. Perhaps the titles on his books could be edited to read “Robert O Young, pHraud”?


Like the Chronicle Flask’s Facebook page for regular updates, or follow @chronicleflask on Twitter. All content is © Kat Day 2017. You may share or link to anything here, including the images, but you must reference this site if you do.


All comments are moderated. Abusive comments will be deleted, as will any comments referring to posts on this site which have had comments disabled.

Advertisements

8 Things Everyone Gets Wrong About ‘Scary’ Chemicals

scaryChemicals. The word sounds a little bit scary, doesn’t it? For some it probably conjures up memories of school, and that time little Joey heated something up to “see what would happen” and you all had to evacuate the building. Which was actually good fun – what’s not to love about an unplanned fire drill during lesson time?

But for others the word has more worrying associations. What about all those lists of additives in foods, for starters? You know, the stuff that makes it all processed and bad for us. Don’t we need to get rid of all of that? And shouldn’t we be buying organic food, so we can avoid ….

….Read the rest of this article at WhatCulture Science.


This is my first article for WhatCulture Science – please do click the link and read the rest!


Like the Chronicle Flask’s Facebook page for regular updates, or follow @chronicleflask on Twitter. In need of a groovy new mug? Check out this page.

MMS and CD chemistry – the facts

The TL:DR version.

The TL:DR version.

About a year ago I wrote a post on the subject of MMS and CD. Many people have since praised that post, but others have complained that it’s rather long (it is) and contains too much opinion.

I believe that anyone that wants them should have easy access to the facts on this subject, and not just the information provided by proponents of MMS/CD use.

With this in mind I’ve written this post as a summary of the basics. I ask only that you credit me if you use this to write an article. A mention of my Twitter account, @chronicleflask, or a link to this page will suffice.

What is MMS?

miracle-mineral-solution-220

MMS is usually sold as water purification drops

MMS stands for ‘master mineral solution’ or sometimes ‘miracle mineral solution’. It is a 22.4% solution of sodium chlorite in water. Sodium chlorite has the chemical formula NaClO2. So, MMS is 22.4 grams of NaClO2 dissolved in 100 mls of water. Sodium chlorite/MMS does not, on its own, act as a bleach.

Sodium chlorite’s LD50 (for rats) is 350 mg/kg. This means that, on average, if you feed rats 350 mg of it per kg of body weight, half the rats will die. If we assume its toxicity is similar in humans (and there’s no reason it should not be) that means that 5.25 grams would probably be enough to kill an average 4-year-old child weighing about 15 kg.

MMS is usually sold as ‘water purification drops’. Search for ‘sodium chlorite water purification’ in Google and you will quickly find it (usually alongside an ‘activator’ solution). Bottles for sale are usually 4 oz, or 114 mls. One quarter of one of these bottles would probably be lethal to a 15 kg 4-year-old.

What is CD (or CDS)?

CD is chlorine dioxide (and CDS stands for chlorine dioxide solution). Chlorine dioxide is ClO2. It is a bleach, used industrially to bleach wood pulp. It is also used to purify water and kill pathogens on certain foodstuffs. It is considered more effective than plain chlorine for water purification – it’s less corrosive and is particularly good at destroying legionella bacteria, as well as many viruses and protozoa.

Chlorine dioxide is more toxic than sodium chlorite. It’s LD50 is 292 mg/kg (the lower the number, the more toxic something is). For this reason, the concentrations used in food/water applications are very low. The US Environmental Protection Agency have set a maximum level of 0.8 mg/L chlorine dioxide in drinking water. That’s 0.00008 grams per 100 ml of water.

What’s the connection between MMS and CDS?

The chemistry of sodium chlorite (the substance in MMS) with acids.

The chemistry of sodium chlorite (the substance in MMS) with acids.

Chlorine dioxide evaporates quickly from solution, which means CD solutions cannot be stored – they have be made freshly as they’re needed. When sodium chlorite is mixed with an acid, usually citric acid (the acid in oranges and lemons), it forms chlorine dioxide. In short:
MMS + acid = CDS.

The chemistry behind this is complicated. It’s simpler if the acid used is hydrochloric acid (HCl), and this particular method of ‘activation’ is sometimes recommended by proponents of MMS/CD use.

If sodium chlorite is mixed with citric acid is used the reaction doesn’t happen in one step. Rather, chlorous acid (HClO2) forms, which ultimately breaks down to form ClO2. Several reactions are involved in this process. The concentration of chlorine dioxide in a solution made in this way is likely to be lower than if hydrochloric acid is used. However, it’s important to realise the the resulting solution is a mixture of harmful substances. Less chlorine dioxide does not necessarily mean safer.

How much chlorine dioxide forms when MMS is ‘activated’?

It’s not possible to answer this precisely, because it depends on several different factors. To begin with, it depends on whether hydrochloric acid or another acid (such as citric acid) is used. It further depends on temperature, and how much acid is added. We have no way of knowing exactly what someone mixing up these solutions at home is doing.

A document on acidified sodium chlorite published by the Joint Expert Committee on Food Additives (JECFA) suggests that, at a pH of 2.3, a 50 ppm solution of sodium chlorite would produce 16 ppm chlorous acid (less at higher pHs). Starting with a 22.4% solution (as in MMS), and allowing for the stoichiometry suggested by the equations above, this could produce something in the region of 36 g of chlorine dioxide per litre of water.

The US EPA’s recommended safe limit for chlorine dioxide is 0.00008 grams per litre of water. Compare this to 36 grams per litre. Even if only a fraction is converted to chlorine dioxide, the resulting mixture is likely to be tens of thousands in excess of safe limits.

How are CD solutions used in food & drink production?

Very dilute solutions, with just a few ppm of chlorine dioxide, are used as sprays or dipping solutions for poultry, meats, vegetables fruit and seafood. However, in these applications the chlorine dioxide evaporates from the food long before anyone eats it – it’s not present in the final food product. Chlorine dioxide is also used in water treatment plants, but the concentration in the final water supply is strictly controlled so that it’s less than the recommended safe limits.

How are CD solutions used as ‘alternative treatments’?

There are groups of people who believe that drinking CD solutions, or using them to perform enemas can cure any and all diseases, illnesses and conditions. However, there is no evidence that CDS is at all efficacious, and no reasonable mechanism has ever been given for its supposed mode of action. Jim Humble, who coined the name MMS ten years ago and sparked the use of these ‘treatments’, claimed that he worked with the Red Cross to successfully treat a group of malaria patients in Uganda. The Red Cross strenuously deny these claims. Other commentators have explained very clearly why Humble’s claims are impossible.

There is a large group online, led by Kerri Rivera, who believe that CD solutions can cure autism. This is not true. Autism is a neurodevelopment disorder. There is no cure, although certain therapies may help those on the autistic spectrum to manage better in day-to-day life. The cause of autism is unclear, but it appears to have a strong genetic basis.

Humble and Rivera advocate drinking CD solutions and/or using them in enemas. Protocols for such treatments involve adding drops of CDS to water, milk or other liquids.

The number of drops used varies. Humble reportedly used 18 drops at a time in his malaria treatment. Usually this is added to further liquid, for example in a 250 ml bottle. Assuming a drop is 0.1 mls, this could be as much as 0.065 g of chlorine dioxide in 250 mls, or 0.26 grams per litre. Once again, US EPA’s recommended safe limit for chlorine dioxide is 0.00008 grams per litre.

The amounts recommended by MMS/CD protocols are likely to be at least 3000 times safe limits, and may be considerably more. Protocols exist which recommend drinking these mixtures every one or two hours, eight times a day or even more.

What would happen if someone drank a CD solution?

It would be ironic if it weren't so tragic.

Chlorine dioxide exposure may actually cause delays in the development of the brain.

It would depend on the concentration. The very low levels used in normal water purification are not be harmful (that’s why safe limits exist), however drinking large amounts (such as those usually recommended in MMS/CD protocols) would cause irritation to the mouth, oesophagus, and stomach. There is no evidence that chlorine dioxide causes cancer. The ATSDR‘s (Agency for Toxic Substances and Disease Registry) entry for chlorine dioxide says that “studies in rats have shown that exposure of pregnant animals to chlorine dioxide or exposure of pups shortly after birth can cause delays in the development of the brain” (see also PMID: 2213920).

Why are CDS enemas used, and what would be the effect?

Rivera in particular advocates CDS enemas to kill the ‘parasites’ which she and her followers believe cause autism. There is no evidence for the existence of these ‘parasites’. Photos published online which purport to show them have been condemned as actually showing intestinal lining and mucus, excreted as the direct result of harsh enema procedures.

Enemas, regardless of the liquid used, have risks. Repeated enemas can cause electrolyte imbalance, rupture of the bowel and damage to the rectal tissues. Enemas with CDS are likely to be particularly dangerous since it is corrosive. Proponents of CDS use claim it is ‘selective’ and only kills ‘harmful’ bacteria and parasites. This is not possible; chlorine dioxide is a strong oxidising agent and damages all cells it comes into contact with, regardless of the nature of those cells.

Children have thinner tissues than adults. The risks of regular enemas, particularly with a corrosive agent such as chlorine dioxide, and particularly when carried out at home by someone with no medical training, are likely to be considerably higher for children.

Is there any way to tell if someone has been using CDS in high concentrations?

Unless someone admits to using CDS, there isn’t really any way to tell. For this reason there are very few reported cases of harm caused by CDS, as users tend to be extremely secretive. Unless an enema causes major trauma (which is a real risk) the symptoms are likely to be fairly vague gastrointestinal distress, which could be caused by any number of other things. There is no routine medical test to measure chlorine dioxide or chlorite in the body. There is a special test to measure chlorite in tissues, blood, urine, and feces, but the test cannot tell the extent of the exposure or whether harmful effects will occur. This test wouldn’t be performed unless exposure was expected. In other words, unless someone admits to using CDS on themselves or their child, it’s unlikely anyone will ever find out.

Has MMS/CDS been in the news?

Yes, on several occasions:

If there’s no cure for autism/cancer/some other condition, mightn’t it be worth trying…?

Medicine is all about risks vs. benefits. The benefit of using a particular treatment must always exceed the risk of using that treatment. In this case, there are no proven benefits of using MMS/CDS. There are considerable risks, as described above. The only thing MMS/CDS will do is make you feel sick and generally more unwell than you (or your child) might already. So no, it isn’t worth trying. Please don’t.

 


Comments will be left open on this page for as long as it takes for me to tire of dealing with “you’re a pharma shill!”, “this is all lies!”, “watch this YouTube video that proves it works!” and “I drink it every day and I’m fine!” type comments.

Like the Chronicle Flask’s Facebook page for regular updates, or follow @chronicleflask on Twitter.

Do you really need to worry about baby wipes?

Never mind ingredients, just give me a packet that's not empty!

Never mind ingredients, just give me a packet that’s not empty!

A little while back I wrote a post about shampoo ingredients, and in passing I mentioned baby wipes. Now, these are one of those products which you’ve probably never bought if you’re not a parent, but as soon as you are you find yourself increasingly interested in them. Yes, I know, reusable ‘wipes’ are a thing. But after dealing with a nappy explosion at 2am in the morning, I’m willing to bet that more than one parent’s environmental conscience has gone in the rubbish bin along with a bag of horror they never want to see again, at least for a little while.

But which wipes to buy? The cheapest ones? The nicest-smelling ones? The fragrance-free ones? The ones with the plastic dispenser on the top that allow you to easily grab one wipe at a time? Or not, because those bulky dispensers produce yet more plastic waste? Or just whichever brand you grabbed first at the all-night supermarket at some unpleasant hour that’s too late to be night yet too early to be morning?

All of the above at one time or another, probably. However, I’m going to suggest that one thing you can stop worrying about right now is whether or not your wipes are labelled ‘chemical-free’.

As I’ve explained before, everything is made up of chemicals. By any sensible definition, water is a chemical, and thus the claim that Water Wipes® (“the world’s purest baby wipe”) are “chemical free” is simply incorrect.

These wipes are not, actually, chemical-free.

These wipes are not, actually, chemical-free.

In fact, Water Wipes® aren’t even, as you might imagine, made of some sort of non-woven fabric impregnated with plain water. No, they contain something else: grapefruit seed extract.

Well, that sounds natural, I hear you say. It does, doesn’t it? Grapefruit, that sounds fresh. Seed, well seeds are healthy, aren’t they? And the word ‘extract’ is very natural-sounding. What’s the problem?

Let’s start with what grapefruit seed extract, also called GSE, actually is. It’s made from the seeds, pulp and white membranes of grapefruit. These ingredients are ground up and a drop of glycerin is added. Glycerin, by the way, is otherwise known as glycerol, or propane-1,2,3-triol. It’s naturally-occurring – it’s one of the molecules you get when you break up fats – and it’s usually made from plants such as soybeans or palm (uh oh…), or sometimes from tallow (oh dear…) or as a byproduct of the petroleum industry (yikes! – I wonder if the manufacturers of Water Wipes® enquired about the nature of the glycerin being added to their product…?)

But anyway, back to GSE. Like all plant extracts, grapefruit seed extract is stuffed full of other chemicals that occur naturally. In particular, flavonoids, ascorbic acid (vitamin C), tocopherols, citric acid, limonoids and sterols.

citric acid synthetic vs natural

Can you tell the difference?

So… in short, not chemical-free at all. Not even a bit. The problem here is that, in marketing, the term ‘chemical-free’ is used to mean something that only contains ingredients from ‘natural’ sources. But this is meaningless. Take citric acid, for example. (E330 by the way – E numbers don’t mean something’s deadly, either. In fact, quite the opposite.) There’s no difference between citric acid extracted from a grapefruit and citric acid prepared in a laboratory. They both have exactly the same atoms and the same molecular formula and structure. They both react in the same way.

They’d both be classified as corrosive in high concentrations, and irritant in low concentrations. This isn’t even “might” cause irritation. This is absolutely, definitely, positively WILL cause irritation.

Wait, hang on a minute! There’s a potentially corrosive chemical in the ‘chemical-free’ baby wipes, and unsuspecting parents are putting it on their baby’s skin?!

Yep.

But before anyone runs off to write the next Daily Mail headline, let’s be clear. It’s really not going to burn, alien acid-style, through a new baby’s skin. It’s not even going to slightly redden a baby’s skin, because the quantity is so miniscule that it quite literally has no corrosive properties at all. It’s the same logic as in the old adage that “the dose makes the poison“.

This is where we, as consumers, ought to stop and think. If a fraction of a drop of citric acid is harmless then…. perhaps that small quantity of PEG 40 hydrogenated castor oil or sodium benzoate in most (considerably less expensive, I’m just saying) other brands of baby wipes isn’t as awful as we thought, either…

Indeed, it’s not. But what sodium benzoate in particular IS, is a very effective preservative.

Grapefruit seed extract is marketed as a natural preservative, but studies haven't backed up this claim.

Grapefruit seed extract is allegedly a natural preservative, but studies haven’t backed up this claim.

Why does this matter? Well, without some sort of preservative baby wipes, which sit in a moist environment for weeks or months or even years, might start to grow mould and other nasties. You simply can’t risk selling packets of water-soaked fabric, at a premium price, without any preservative at all, because one day someone might open one of those packets and find it full of mould. At which point they would, naturally, take a photo and post it all over social media. Dis-as-ter.

This is why Water Wipes® include grapefruit seed extract, because it’s a natural preservative. Except…

When researchers studied GSE and its antimicrobial properties they found that most of their samples were contaminated with benzethonium chloride, a synthetic preservative, and some were contaminated with other preservatives, some of which really weren’t very safe at all. And here’s the kicker, the samples that weren’t contaminated had no antimicrobial properties.

In other words, either your ‘natural’ grapefruit seed extract is a preservative because it’s contaminated with synthetic preservatives, or it’s not a preservative at all.

If you're worried, just use cotton wool pads and water.

You can always use cotton wool pads and water.

If you’re worried that baby wipes may be irritating your baby’s skin – I’m not claiming this never happens – then the best, and cheapest, thing to do would be to simply follow the NHS guidelines and use cotton wool and water. It’s actually easier and less messy than you might imagine – packets of flat, cosmetic cotton wool pads are readily available (and pretty cheap). Simply dip one in some clean water, wipe and throw it away. It’s really no more difficult or messy than wipes.

But if you’re choosing a particular brand of wipes on the basis that they’re “chemical-free”, despite the fact that other types have never actually caused irritation, you can stop. Really. Buy the cheap ones. Or the nicest-smelling ones, or the ones that come out of the packet most easily. Because NONE of them are chemical-free, and it’s really not a problem.


Follow The Chronical Flask on Facebook at fb.com/chronicleflask and Twitter as @chronicleflask for regular updates.

 

 

 

Words of woo: what does ‘alkalise’ mean?

220px-Marketvegetables

‘alkaline’ diets usually revolve around eating lots of fruit and vegetables – no bad thing, but it won’t change your body’s pH

If you hang around in the unscientific chunks of the internet for any length of time, as I find myself doing from time to time, you start to come across certain words that get used over and over. They are usually words that sound very sciency, and they’re being used to make things sound legitimate when, if we’re honest, they’re really not.

One such word is ‘alkalise’ (or ‘alkalize’). I’ve met it often ever since I wrote my post ‘Amazing alkaline lemons?‘. So, what does this word mean?

Good question. Google it, and at least the first three pages of links are about diets and how to ‘alkalise your body’ featuring such pithy lines as:

“It’s not really a diet… it’s a way of eating” (is there a difference?)
“Alkalise or live a life of misery” (gosh)
“Alkalise or die” (blimey)
“Alkaline water” (apparently this is a thing)
“Why it’s important to alkalise your water” (using our overpriced products)

In fact, I had to click through several pages of Google links before I even got to something that was simply a definition. (I’m aware that Google personalises its search results, so if you try this yourself you might have a different experience.) Certainly, there are no legitimate chemistry, biochemistry – or anything else like that – articles in sight.

Hunt specifically for a definition and you get turn basic and less acidic; “the solution alkalized”‘ (The Free Dictionary), to make or become alkaline. (Dictionary.com) and, simply, ‘to make alkaline’ (Collins).

Universal_indicator_paper

pH 7 is neutral, more than 7 is basic

The first of these is interesting, because it refers to ‘basic’. Now, as I’ve explained in another post, bases and alkalis are not quite the same thing. In chemistry a base is, in simple terms, anything that can neutralise an acid. Alkalis, on the other hand, are a small subset of this group of compounds: specifically the soluble, basic, ionic salts of alkali metals or alkaline earth metals.

Since there are only six alkali metals (only five that are stable) and only six alkaline earth metals (the last of which is radium – probably best you steer clear of radium compounds) there are a rather limited number of alkalis, namely: lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, caesium hydroxide, beryllium hydroxide, magnesium hydroxide, calcium hydroxide, strontium hydroxide, barium hydroxide and radium hydroxide. There you go. That’s it. That’s all of them. (Okay, yes, under the ‘soluble in water’ definition we could also include ammonium hydroxide, formed by dissolving the base, ammonia, in water – that opens up a few more.)

This, you see, is why real chemists tend not to use the term ‘alkalise’ very often. Because, unless the thing you’re starting with does actually form one of these hydroxides (there are some examples, mostly involving construction materials), it’s a little bit lead-into-gold-y, and chemists hate that. The whole not changing one element into another thing (barring nuclear reactions, obviously) is quite fundamental to chemistry. That’s why your chemistry teacher spent hours forcing you to balance equations at school.

No, the relevant chemistry word is ‘basify‘. This is such a little-known word that even my spell checker complains, but it’s just the opposite of the slightly better-known ‘acidify’ – in other words, basify means to raise the pH of something by adding something basic to it. Google ‘basify’ and you get a very different result to that from ‘alkalise’. The first several links are dictionary definitions and grammar references, and after that it quickly gets into proper chemistry (although I did spot one that said ‘how to basify your urine’ – sigh).

What does all this mean? Well, if you see someone using the word “alkalising” it should raise red flags. I’d suggest that unless they’re about to go on to discuss cement (calcium hydroxide is an important ingredient in construction materials) cocoa production or, possibly, certain paint pigments, then you can probably write off the next few things they say as total nonsense. If they’re not discussing one of the above topics, the chances are good that what they actually know about chemistry could safely fit on the back of a postage stamp, with space to spare, so nod, smile and make your escape.

For the record, you absolutely don’t need to alkalise your diet. Or your urine*. Really. You don’t.

And please don’t waste your money on alkaline water.

—-

Follow The Chronicle Flask on Facebook for regular updates and other interesting chemistry and science bits and pieces.

Lemon

There’s no good evidence that drinking lemon juice has a significant impact on urine pH.

* In the event that you actually have problematically acidic urine, perhaps due to some medical condition, there are proven treatments that will neutralise it (i.e. take it to around pH 7, which is the pH urine ought to be, roughly). In particular, sodium citrate powder can be dissolved in water to form a drinkable solution. Of course, if this is due to an infection you should see a doctor: you might need antibiotics – urinary tract infections can turn nasty. Yes, I am aware that the salt of the (citric) acid in lemons is sodium citrate, however there is no good evidence that drinking lemon juice actually raises urine pH by a significant amount. And yes, I’m also aware that dietary intake of citrate is known to inhibit the formation of calcium oxalate and calcium phosphate kidney stones, but that’s a whole other thing. If you have kidney stones there are a number of dietary considerations to make, not least of which might be to cut down on your consumption of certain fruits and vegetables such as strawberries and spinach (and ironically, if you look at some of the – entirely unscientific – lists of acid-forming and alkali-forming foods these are almost always on the alkaline side).

Amazing alkaline lemons?

Tonight on How Not to Get Old (I really shouldn’t have been watching it) I heard the following gem:

Lemon

Can lemons neutralise acids? (Spoiler: no)

“Lemons neutralise acidity.”

In fact, not only did I hear it, it even flashed up on the screen in a helpful little box. The speaker was Elizabeth Peyton-Jones, who says on the Channel 4 website that she is a “herbalist, naturopath and food and health consultant” and that she has “run a highly successful alternative health clinic in Central London for over a decade.”

Hm.

256px-Zitronensäure_-_Citric_acid.svg

A molecule of citric acid. Definitely not an alkali.

Let’s start here: lemons are acidic. Why are they acidic? They contain citric acid, about 5% by weight. Citric acid has the chemical formula C6H8O7, and the catchy systematic name of 2-hydroxypropane-1,2,3-tricarboxylic acid. If you look at the molecule you can see why it’s an acid. See those OH’s that are sitting next to =O’s? Those are acid groups. There are three of them. This is most definitely an acid.

Why do they make it an acid? Or rather, what is an acid? Well there is a bit more to this than I’m about to explain (interested parties could read about Lewis acids) but essentially acids are substances that can release H+ ions (‘hydrogen ions’) when they’re dissolved in water. Those three acid groups in citric acid can, in theory, release three H+ ions per molecule. So you might expect that citric acid is a pretty strong acid.

In fact, it’s not.  It’s actually what chemists call a weak acid, because although it can release three hydrogen ions per molecule it doesn’t really want to that much. It’s a stingy old Scrooge and likes to keep hold of them. But that doesn’t make it somehow not an acid, it still is one. The pH of lemon juice is about 2.

Which brings me to pH. It’s possibly the most abused and misunderstood scale ever. (There are two wonderful blog posts on that very subject, written by Marc Leger, which you really should read, obviously after you’ve finished here.) I’ve even found a school text book, yes honestly a school text book, that said “no one really knows what pH stands for”. Er. What?

Chemists know what it stands for thank you very much (I suspect, or at least hope, that the author of that book was not a chemist). The H stands for, guess what? Yes, the amount of hydrogen ions. The p is a symbol chemists use as shorthand for ‘negative log10‘ (it’s p because it comes from the German word for potency or power, potenz, and this might be why some books claim that pH stands for ‘potential hydrogen’, which it doesn’t really).

Log refers to logarithms. I’m not going to explain those in depth here – if you want to know more, this page has a clear explanation – but you will have come across other log scales. Probably the best-known is the one used to describe earthquakes: the Richter scale. Basically when you go up by a factor of 1 on the scale, it’s actually a power of 10. A major would-seriously-damage-buildings earthquake that measures 7 on the Richter scale is 1000 times more powerful than a light crockery-rattling quake that only measures 4. The pH scale is like this: every point on the scale represents ten times more (or fewer, depending on which way you’re going) hydrogen ions.

Slightly counter-intuitively (but the maths works out, honest) a lower pH means more hydrogen ions. An acidic solution with a pH of 2 has 1000 times more free hydrogen ions than one with a pH of 5. The pH scale goes from 14 down to 0, and actually negative pH values are possible as well. Values above 7 are described as alkaline (or basic), 7 itself is neutral and those below 7 are acidic.

Saying that this or that acid has a pH of a specific number (like I sort of did back up there when talking about lemons, remember I started with lemons?) is a bit of a nonsense, although many authors do it. pH refers to the concentration of hydrogen ions. You could get some hydrochloric acid (the stuff in your stomach) and dilute it, and its pH would actually go up. Really. If you drop a bit of lemon juice in a big glass of water its pH would be closer to neutral (pH 7) than 2. If you think about it you know this: drink neat lemon juice and you’re puckering up your lips in a classic ‘sour’ face. Drink some water with a bit of lemon in and you barely notice it.

Phew. Ok. Back to the frankly silly statement that lemons neutralise acid. We’ve established that lemons contain citric acid, and although citric acid is a weak acid, it still is an acid. It produces hydrogen ions when you put it in water, and for that reason the pH of lemon juice – as it comes out of the lemon – is about 2.

If you want to neutralise an acid, you need an alkali (or, more generally, a base). Alkalis contain OH ions (hydroxide ions) which can react with hydrogen ions and actually remove them from a solution, like this:

H+  +  OH  –>  H2O

Look, that’s water on the right hand side of that slightly-wonky arrow. Pure water has a neutral pH of 7. If you add exactly enough hydroxide ions to join up with all the hydrogen ions, you get water (and a salt, because there will have been some other stuff in there as well).

Once you get this far, it becomes fairly obvious that adding more hydrogen ions to hydrogen ions isn’t going to neutralise anything. It’s like trying to turn your blue paint purple by adding more blue paint.

If anything, adding more acid will make your solution even more acidic (although with a weak acid it may not be quite that simple, is it ever?) Again, experience bears this out. Your stomach contains hydrochloric acid, along with some other stuff, and has a pH of between 1.5 and 3.5. Fortunately your stomach is lined with special cells that protect you from this powerful stuff. Acid indigestion, something many of us have experienced at one time or another, happens (usually) when that stomach acid gets where it shouldn’t be, i.e. into your esophagus, where it burns.

If you have indigestion, do you drink lemon juice? No you do not. Not unless you actively like pain, that is. No, you take an indigestion remedy. Guess what they’re made of? Yes, alkalis, or bases (and sometimes other clever ingredients as well). They really do neutralise the excess acid by way of the equation I wrote up there.

And unless you have indigestion, why would you want to ‘neutralise acidity’ anyway? Stomach acid evolved for a reason. It helps to break down your food, proteins in particular, and it also keeps you safe from lots of bacteria and other nasties which usually don’t like acidic conditions. Once your stomach has done its thing the partially-digested food passes into your small intestine where it gets squirted with bile, which actually does neutralise it so it can pass through your intestines without doing any damage.

Your body has this covered. There really is no need to mess with it, and in any case, you can’t really. At least, not beyond your stomach (and urine, possibly – see my comment at the end). Homeostasis insures that everything stays remarkably consistent, and good thing too. There are lots of chemical reactions going on in your body that keep you alive, whether you realise it or not. If you could actually mess with the pH of your blood (pH 7.35-7.45) you’d be in a whole heap of trouble.

So can lemons neutralise acid? No. Can what you eat ‘alkalize’ your blood? (It’s terrifying just how many websites there are about this.) No. Absolutely not. Under no circumstances. If you were to eat a lot of indigestion tablets they would neutralise the acid in your stomach, but that would have no effect on your blood. Literally no effect.

By all means eat a healthy diet. Fruit and vegetables are definitely good for you. Lemons contain vitamin C (yet another acid: ascorbic acid) which is a vital nutrient. Eating them will certainly do you no harm and might well do you some good. But don’t let anyone tell you they’re anything more than a healthy citrus fruit.

Note: 
As you can see, this post has generated a lot of comments. Some more scientific than others.  In particular, a lot of them have focused on urine, and the effect lemon juice might or might not have on urine pH. My original post was not about urine, but clearly a lot of people are fascinated by the subject. Who knew?

So here’s a little extra on that topic to save me repeating myself in comments.

It’s well-known that chemical makeup of urine can be affected by what we eat. We’ve probably all experienced the odd effects of asparagus, or beetroot, or even sugar puffs, so the idea that certain dietary substances make their way into urine is nothing particularly new or surprising.

And following from this it IS possible to affect urine pH by eating or drinking certain substances. For example, if you’re a cystitis sufferer, you might have used a sodium citrate-containing product such as Cymalon. During a cystitis attack the urine becomes more acidic. These products work by creating a buffer effect in the bladder, which means they raise the pH slightly towards neutral and, crucially, stabilise it so that it doesn’t drop again (or, indeed, rise).

Lemons contain citric acid, the salt of which is citrate. So it’s possible eating a lot of lemons (or drinking a lot of lemon juice) could have a similar effect. I found a paper on this very topic. The researchers found that drinking lemon juice produced a small increase in urinary pH from about 6.7 to 6.9. So, ok, it went up a tiny bit (remember that pH 7 is neutral) but given that the error in their measurements was +/- 0.1, that’s virtually no change at all.

That said, the main focus of their interest was actually treatment of kidney stones, which are, in some cases, caused by a build-up of calcium oxalate which then forms crystals. The researchers found that the lemon juice helped the body to get rid of oxalate, and they’re not the only ones to draw this conclusion. Magnesium can also help prevent kidney stone formation (magnesium-rich foods include leafy greens, nuts and seeds, oily fish and whole grains – basically all that ‘healthy diet’ stuff, funnily enough).

So in summary (and I stress, I am not a medical doctor and you should take your GP’s advice over that of some blogger on the internet), if you suffer from kidney stones, lemon juice might be helpful. It certainly won’t do you any harm (well, except possibly to your tooth enamel). A generally healthy diet will also, not surprisingly, be beneficial. Lemon juice might have a very tiny effect on urine pH. However if it does, the result is only to raise the pH a tiny bit closer to pH 7 (i.e. neutral). It does not make your urine alkaline.

The topic of gout has also come up. Vitamin C is known to help with gout. Lemons contain a lot of vitamin C (ascorbic acid, not to be confused with citric acid). If you’re a gout sufferer, drinking lemon juice might help. Although taking a vitamin C supplement might be even better.

None of this in any way relates to the blood, or ‘the body’ in general. You cannot, absolutely cannot, affect your blood pH with your diet, and nor would you want to.

Oh, and buffers seem to come up a lot too. To save time I put all of that in a separate blog post: buffers for bluffers.

————–

Note: comments have been closed on this post because I found myself repeatedly refuting the same arguments over and over again. One in particular is the notion that lemon juice somehow becomes alkaline once in the body, and that this is why lemons are considered ‘alkaline’. Lemon juice will certainly be neutralised during the digestive process but there is no mechanism by which it could possibly “become alkaline”. Please don’t post comments on other pages in this site to get around the fact that comments have been closed.

The acid that really does eat through everything

acid burnThanks to the big screen, many of us think of acids as dangerous, burn-through-anything substances.  Think of those scenes in the Alien movies, where the alien’s blood drips through solid metal, destroying everything in its path.

Of course the vast majority of acids are much more boring.  Vinegar (which contains ethanoic acid) and citric acid (found in, guess what, citrus fruits) are common acids that we eat all the time, and they don’t burn holes in your mouth.  There’s an even stronger acid, hydrocholoric acid (HCl), in your stomach and not only does it not burn you from the inside out (usually), it actually helps you to digest your food and keeps you safe from nasty bacteria.

But there is an acid that’s really, properly scary.  And its name is hydrofluoric acid.

Hydrofluoric acid has the chemical formula HF, but unlike HCl you won’t find this one in a school laboratory, and if it turns up in your stomach you’re in very big trouble.  In true movie-acid style it’s capable of dissolving many materials, and is particularly well-known for its ability to dissolve glass (which is mainly silicon dioxide).  It will also dissolve most ceramics (which contain aluminosilicates: compounds made of chemically-bonded aluminium, silicon and oxygen).  And, like many other acids, it also reacts with metals, so storing it is a bit tricky.  Where do you put something that eats through its container? Well, these days it’s stored in special plastic bottles, but in the 17th century when it was first discovered chemists had to use glass bottles coated inside with wax, and hope the coating was a good one.

HF has been an important industrial chemical for centuries.  It’s used to etch patterns into, and clean, glass and ceramics, and also to dissolve rock samples, for example to extract chemicals or fossils from rocks.  It’s also used to clean stainless steel and, in more recent times, to prepare silicon wafers (used to make silicon chips) in the electronics industries.

The chemist Carl Wilhelm Scheele (him again – he just keeps turning up doesn’t he?) was the first person to produce HF in large quantities in 1771.  Scheele is particularly famous for his bad habit of sniffing and tasting any new substances he discovered.  Cumulative exposure to mercury, arsenic, lead, their compounds, hydrofluoric acid, and other substances took their toll on him and he died on 21 May 1786 at the age of just 43.  And that’s why your science teacher was endlessly telling you not to eat or drink in the laboratory.

So why is hydrogen fluoride so nasty?  For starters the gas is a severe poison that immediately and permanently damages the lungs and the corneas of the eyes – lovely. Hydrofluoric acid solution is a contact-poison that causes deep, initially painless burns which result in permanent tissue death. It also interferes with calcium metabolism, which means that exposure to it can and does cause cardiac arrest (heart attack) and death.  Contact with as little as 160 square centimeters (25 square inches) of skin can kill – that’s about the area of the palm of your hand.

And now for a gruesome and tragic tale: in 1995 a chemist working in Australia was sitting working at a fume cupboard and knocked over a small quantity (100-230 millilitres, about the equivalent of a drinking glass full of water) of hydrofluoric acid onto his lap, splashing both thighs.  He immediately washed his legs with water, jumped into a chlorinated swimming pool at the rear of the workplace, and stayed there for about 40 minutes before an ambulance arrived.  (Should you ever need to know, the proper treatment for HF exposure is calcium gluconate gel: calcium gluconate reacts very quickly with hydrofluoric acid to form non-toxic calcium fluoride, rendering it harmless.)  Sadly, his condition deteriorated in hospital and, despite having his right leg amputated 7 days after the accident, he died from multi-organ failure 15 days after hydrofluoric acid spill.  Remember, that was a spill the size of a glass of water.

Because hydrofluoric acid interferes with nerve function, burns from it often aren’t painful to begin with. Small accidental exposures can go unnoticed, which means that people don’t seek treatment straight away, making the whole thing worse.  Do a Google image search on ‘hydrogen fluoride burns’ and you’ll see some images that will really turn your stomach.

So which would you rather meet?  An alien with acid blood and a habit of laying eggs in your stomach or an invisible gas that destroys your tissues and leaves you, if not dead from multiple organ failure, then suffering with horribly disfiguring burns?  You might stand a better chance against the alien…


Comments have been turned off for this post. If you’re planning a DIY project, hydrofluoric acid is probably not your friend. Try Google and/or YouTube; there are almost certainly umpteen safer ways to do the thing you’re trying to do.


All content is © Kat Day 2017. You may share or link to anything here, but you must reference this site if you do.