What IS a chemical?

a_chemistry_teacher_explaining_an_experiment_8d41253v

You at the back there! Get your nose out of that dictionary and pay attention!

What do we mean when we use the word “chemical”? It seems like a simple enough question, but is it, really? I write about chemicals all the time – in fact my last WhatCulture article was about just that – and I’ve mentioned lots of different definitions before. But I’ll be honest, some of them have bothered me.

I don’t often like the definitions you find in dictionaries. Lexicography and chemistry don’t seem to be common bedfellows, and dictionary compilers haven’t, generally speaking, spent their formative years being incessantly nagged by weary chemistry teachers about their choice of vocabulary.

For example, in the Cambridge Dictionary we find:
any basic substance that is used in or produced by a reaction involving changes to atoms or molecules.”

Hm. Firstly, “basic” has a specific meaning in chemistry. Obviously the definition doesn’t mean to imply that acids aren’t chemicals, but it sort of accidentally does. Then there’s the implication that a chemical reaction has to be involved. So inert substances aren’t chemicals? Admittedly, “used in” doesn’t necessarily imply reacts – it could be some sort of inert solvent, say – but, again, it’s bothersome. Finally, “atoms or molecules”. Ionic substances not chemicals either, then?

Yes, it’s picky, but chemists are picky. Be glad that we are. A misplaced word, or even letter, on a label could have serious consequences. Trust me, you do not want to mix up the methanol with the ethanol if you’re planning cocktails. Similarly, fluorine is a whole other kettle of piranhas compared to fluoride ions. This stuff, excuse the pun, matters.

Dictionary definitions have their problems.

Dictionary definitions have their problems.

Let’s look at some more definitions (of the word as a noun):

The Free Dictionary tells us that a chemical is:
“A substance with a distinct molecular composition that is produced by or used in a chemical process.”

Merriam Webster says:
“of, relating to, used in, or produced by chemistry or the phenomena of chemistry <chemical reactions>”

And Dictionary.com goes with the simple:
“a substance produced by or used in a chemical process.”

That idea that a chemical reaction must be involved somehow seems to be pervasive. It’s understandable, since that’s the way the word is mostly used, but it’s not really right. Helium, after all, is still very much a chemical, despite being stubbornly unreactive.

Possibly the best of the bunch is found in the Oxford Living Dictionary:
“A distinct compound or substance, especially one which has been artificially prepared or purified.”

Not bad. Well done Oxford. No mention of chemical reactions here – it’s just a substance. We do most often think of chemicals as things which have been “prepared” somehow. Which is fair enough, although it can lead to trouble. In particular, ridiculous references to “chemical-free” which actually mean “this alternative stuff is naturally-occurring.” (Except of course it often isn’t: see this article about baby wipes.) The implication, of course, is that thing in question is safe(r), but there are lots and lots of very nasty chemicals in nature: natural does not mean safe.

You keep using that word. I do not think it means what you think it means.

Sometimes people will go the other way and say “everything is chemicals.” We know what this means, but it has its problems, too. Light isn’t a chemical. Sound isn’t a chemical. All right, those are forms of energy. What about neutrinos, then? Or a single proton? Or a single atom? Or, going the other way, some complicated bit of living (or once living) material? In one debate about this someone suggested to me that a “chemical was anything you could put in a jar,” at which point I pedantically said, “I keep coffee in a jar. Is that a chemical?” Obviously there are chemicals in coffee, it works from the “everything is chemicals” perspective, but it’s a single substance that’s not a chemical.

Language is annoying. This is why chemists like symbols and numbers so much.

Anyway, what have we learned? Firstly, something doesn’t necessarily have to be part of a chemical reaction to be a chemical. Secondly, we need to include the idea that it’s something with a defined composition (rather than a complex, variable mixture, like coffee), thirdly that chemical implies matter – light, sound etc don’t count, and fourthly that it also implies a certain quantity of stuff (we probably wouldn’t think of a single atom as a chemical, but collect a bunch together into a sample of gas and we probably would).

So with all that in mind, I think I shall go with:

So what IS a chemical?

A chemical is…

(Drum roll please….)

Any substance made of atoms, molecules and/or ions which has a fixed composition.

I’m not entirely convinced this is perfect, but I think it more or less works.

If you have a better idea, please do comment and let me know!


Like the Chronicle Flask’s Facebook page for regular updates, or follow @chronicleflask on Twitter. In need of a groovy new mug? Check out this page.


All comments are moderated. Abusive comments will be deleted, as will any comments referring to posts on this site which have had comments disabled.

 

Are you a chemist and you didn’t know it?

When I tell people that I’m a chemist, I often get an “oooh, I was really bad at that at school” type response. It’s surprising the number of people that think chemistry has nothing whatsoever to do with their daily lives. Memorably, one acquaintance of an acquaintance (I wouldn’t go so far as to say friend of a friend) once even proclaimed, quite proudly, that the whole of science had nothing to do with her, and she lived her life entirely without it. I was so gobsmacked I didn’t really know where to start, and trust me, that doesn’t happen often.

washing-hands--soap-jpgSo with that in mind, here are five bits of chemistry you do every day. Or at least regularly. You’re a chemist and you didn’t know it!

1. Wash your hands.
Well, we all hope you do this one every day anyway. Soap is very clever stuff. It’s one of the oldest bits of chemistry there is, going back thousands of years, when people first discovered that if they washed their pots with the ashes of cooking fires they got a better result. Soap is made by a process called saponification, where fats are mixed with strong alkalis (traditionally lye: sodium or potassium hydroxide). The fats break apart and form fatty acid salts. What’s clever about those, is that they have a water-loving end (the salt bit) and a water-hating end (the fatty acid bit). So they can grab onto both, and hold the water and oil together. That’s what you do every time you use soap: the dirt ingrained in oil on your skin (nice) can, with the help of those lovely soap molecules, mix with water and so be washed away. Brilliant!

2. Drink a pH indicator.
‘What’ I hear you cry, ‘I do no such thing!’ Ah but do you drink tea (the black kind)? If so, then you do, even if you’ve never noticed. Have you ever put lemon in your tea instead of milk? If not, and you have tea and lemon juice (bottled is fine) in your house, go and try it now. The colour change is really quite lovely to watch. Lemon juice is a source of ascorbic and citric acids, and has a pH of roughly 2-3. You’ll see the same effect with vinegar too, although that mixture wouldn’t be quite so nice to drink. (If you’re feeling adventurous, try some common alkalis such as baking soda or bleach, but DEFINITELY don’t drink those concoctions afterwards…)

3. Carry out combustion.
Ever lit a match? Or a lighter? Started your gas cooker? Turned on your gas boiler? Started your petrol or diesel car? Of course you have. Every single time you do any of those things, the carbon atoms in their molecules are reacting with oxygen to produce carbon dioxide and water. And even if you live under a damp and fireless rock, you’re still doing it – respiration, the process by which all your cells obtain energy – is a form of combustion.

4. Watch some ice float.
Ice floats. Stop press!
We take that for granted, but it’s amazing really. This is a brilliant bit of chemistry that has its tendrils in physics and biology too. Solids don’t generally float on their liquids. Solids are usually more dense than their liquid form, so they sink. But if water behaved like that we wouldn’t have life on this planet, because every time any body of water got really cold it would freeze from the bottom up, taking out all the life swimming in its depths in the process. Since we’re fairly sure that life began in the oceans, evolution would have come to a full stop. But water doesn’t behave like that; water expands when it freezes. Why? Because water has something called hydrogen bonds between its molecules, and as it solidifies these bonds increasingly force the crystalline structure to be very ‘open’. As a result, ice is actually less dense than water, so it floats. This is also why ice is so brilliant at cooling liquids; the warm stuff rises, hits the cold ice and sinks again, creating a sort of cycle called a convection current. Who knew there was so much sciency stuff in your spritzer?

5. Bake a cake.
Food is a rich source of chemistry, just ask Heston. In this case, I’m thinking of baking soda, otherwise known as sodium hydrogencarbonate, or sodium bicarbonate (NaHCO3). When it’s heated above about 70 oC it undergoes a chemical reaction called decomposition. In other words, its molecules break apart without actually needing to react with any other substance. When you put baking soda into your recipe, or use ‘self-raising’ flour (which has it already added), you’re setting it up for this chemical reaction. As the cake cooks, the mixture heats up, and the baking soda does this:
2NaHCO3 –> CO2 + H2O + Na2CO3
The carbon dioxide, CO2, is a gas and it pushes your mixture up and out, causing it to rise. No baking soda chemistry, no lovely, fluffy cake.

So, next time someone tells you they’re rubbish at chemistry, you can point out that they’re doing it every day!