Is acrylamide in your toast really going to give you cancer?

Acrylamide has been in the news today, and this might be the understatement of the year. Front page newspaper headlines have been yelling everything from “Brits officially warned off chips” to “Over-cooked potatoes and burnt toast could cause cancer” to the marginally more restrained “What is the real cancer risk from eating roast potatoes or toast?” All this has been accompanied by radio interviews with everyone from actual scientists to professional chefs to people keen to share their roast potato recipes. I expect there have been television interviews too – I haven’t had a chance to watch.

Hey, what could be more traditional, or more fun, than a food-health scare in January?

Acrylamide

Acrylamide

Never fear, the Chronicle Flask is here to sort out the science. Let’s get to the facts: what is acrylamide?

It’s actually a rather small molecule, and it falls into a group of substances which chemists call amides. Other well-known amides include paracetamol and penicillin, and nylon is a polyamide – that is, lots of amide molecules joined together. Amide linkages (the CO-NH bit) are a key feature of proteins, which means they appear in all kinds of naturally-occurring substances.

And this is where the food-acrylamide link comes in. Because acrylamide, or prop-2-enamide to give it its official name (the one only ever used by A-level chemistry students), forms when certain foods are cooked.

Acrylamide occurs naturally in fried, baked, and roasted starchy foods.

Acrylamide occurs naturally in fried, baked, and roasted starchy foods.

It begins with an amino acid called asparagine. If you’re wondering whether, with that name, it has anything to do with asparagus, you’d be on the right track. It was first isolated in the early 1800s from asparagus juice. It turns out to be very common: it’s found in dairy, meat, fish and shellfish, as well as potatoes, nuts, seeds and grains, amongst other things.

This is where the trouble begins. When asparagine is combined with sugars, particularly glucose, and heated, acrylamide is produced. The longer the food is heated for, the more acrylamide forms. This is a particular issue with anything wheat or potato-based thanks to the naturally-occurring sugars those foods also contain – hence all the histrionics over chips, roast potatoes and toast.

How dangerous is acrylamide? The International Agency for Research on Cancer have classified it as a Group 2A carcinogen, or a “probable” carcinogen. This means there’s “limited evidence” of carcinogenicity in humans, but “sufficient evidence” of carcinogenicity in experimental animals. In other words (usually) scientists know the thing in question causes cancer in rats – who’ve generally been fed huge amounts under strictly controlled conditions – but there isn’t any clear evidence that the same link exists in humans. It’s generally considered unethical to lock humans in cages and force feed them acrylamide by the kilo, so it’s tricky to prove.

screen-shot-2017-01-23-at-22-10-46At this point I will point out that alcoholic beverages are classified as Group 1 carcinogens, which means there is “sufficient evidence” of carcinogenicity in humans. Alcohol definitely causes cancer. If you’re genuinely concerned about your cancer risk, worry less about the roast potatoes in your Sunday roast and more about the glass of wine you’re drinking with them.

But back to acrylamide. In animals, it has been shown to cause tumours. It’s one of those substances which can be absorbed through the skin, and after exposure it spreads around the body, turning up in the blood, unexposed skin, the kidneys, the liver and so on. It’s also been shown to have neurotoxic effects in humans. BUT, the evidence that it causes cancer in humans under normal conditions isn’t conclusive. A meta-analysis published in 2014 concluded that “dietary acrylamide is not related to the risk of most common cancers. A modest association for kidney cancer, and for endometrial and ovarian cancers in never smokers only, cannot be excluded.” 

The dose makes the poison is an important principle in toxicology (image credit: Lindsay Labahn)

The dose makes the poison (image credit: Lindsay Labahn)

As I so often find myself saying in pieces like this: the dose makes the poison. The people who have suffered neurotoxic effects from acrylamide have been factory workers. In one case in the 1960s a patient was handling 10% solutions of the stuff, and “acknowledged that the acrylamide solution frequently had splashed on his unprotected hands, forearms and face.” The earliest symptom was contact dermatitis, followed by fatigue, weight loss and nerve damage.

Because of these very real risks, the Occupational Safety and Health Administration and the National Institute for Occupational Safety and Health have set occupational exposure limits at 0.03 mg/m3 over an eight-hour workday, or 0.00003 g/m3.

Let’s contrast that to the amount of acrylamide found in cooked food. The reason all this fuss erupted today is that the Food Standards Agency (FSA) published some work which estimated the amounts of acrylamide people are likely to be exposed to in their everyday diet.

The highest concentrations of acrylamide were found in snacks (potato crisps etc), and they were 360 μg/kg, or 0.00036 g/kg or, since even the most ardent crisp addict doesn’t usually consume their favoured snacks by the kilo, 0.000036 g/100g. (Remember that those occupational limits are based on continuous exposure over an eight-hour period.)

In other words, the amounts in even the most acrylamide-y of foodstuffs are really quite tiny, and the evidence that acrylamide causes cancer in humans is very limited anyway. There is some evidence that acrylamide accumulates in the body, though, so consuming these sorts of foods day in and day out over a lifetime could be a concern. It might be wise to think twice about eating burnt toast every day for breakfast.

Oh yes, and there’s quite a lot of acrylamide in cigarette smoke. But somehow I doubt that if you’re a dedicated smoker this particular piece of information is going to make much difference.

As the FSA say at the end of their report:

Your toast almost certainly isn't going to kill you.

Your toast almost certainly isn’t going to kill you.

“The dietary acrylamide exposure levels for all age classes are of possible concern for an increased lifetime risk of cancer. The results of the survey do not increase concern with respect to acrylamide in the UK diet but do reinforce FSA advice to consumers and our efforts to support the food industry in reducing acrylamide levels.”

This is not, I would suggest, QUITE the same as “Crunchy toast could give you cancer, FSA warns” but, I suppose, “FSA says risk hasn’t really changed” wouldn’t sell as many newspapers.

One last thing, there’s acrylamide in coffee – it forms when the beans are roasted. There’s more in instant coffee and, perhaps counterintuitively, in lighter-roasted beans. No one seems to have mentioned that today, possibly because having your coffee taken away in January is just too terrifying a prospect to even contemplate. And also perhaps because coffee seems to be associated with more health benefits than negatives. Coffee drinkers are less likely to develop type 2 diabetes, Parkinson’s disease, dementia, suffer fewer cases of some cancers and fewer incidences of stroke. Whether the link is causal or not isn’t clear, but coffee drinking certainly doesn’t seem to be a particularly bad thing, which just goes to show that when it comes to diet, things are rarely clearcut.

Pass the crisps, someone.


Like the Chronicle Flask’s Facebook page for regular updates, or follow @chronicleflask on Twitter. In need of a groovy new mug for your oh-so-healthy coffee? Check out this page.


All comments are moderated. Abusive comments will be deleted, as will any comments referring to posts on this site which have had comments disabled.

 

What’s all the fuss about glyphosate?

Glyphosate, the key ingredient in Monsanto’s weedkiller Roundup, has been in the news recently. A few weeks ago it was widely reported that a UN/WHO study had shown it was ‘unlikely to pose a carcinogenic risk to humans‘. But it then emerged that the chairman of the UN’s joint meeting on pesticide residues (who, incidentally, has the fabulous name of Professor Boobis) also runs the International Life Science Institute (ILSI). Which had received a $500,000 donation from Monsanto, and $528,500 from an industry group which represents Monsanto among others.

And then it transpired that there was going to be an EU relicensing vote on glyphosate two days after the (since postponed) UN/WHO report was released, which resulted in another outcry.

Glyphosate molecule

A molecule of glyphosate

So what is glyphosate, and why all the fuss?

It was first synthesized in 1950 by Swiss chemist Henry Martin. It was later, independently, discovered at Monsanto. Chemists there were looking at water-softening agents, and found that some of them also killed certain plants. A chemist called John E. Franz was asked to investigate further, and he went on to discover glyphosate. He famously received $5 for the patent.

Chemically, glyphosate is a fairly simple molecule. It’s similar in structure to amino acids, the building blocks of all proteins, in that it contains a carboxylic acid group (the COOH on the far right) and an amine group (the NH in the middle). In fact, glyphosate is most similar to the smallest of all amino acids, glycine. Where it deviates is the phosphonic group (PO(OH2)) on the left. This makes it a (deep breath) aminophosphonic analogue of glycine. Try saying that when you’ve had a couple of beers.

As is usually the way in chemistry, changing (or indeed adding) a few atoms makes a dramatic difference to the way the molecule interacts with living systems. While glycine is more or less harmless, and is in fact a key component of proteins, glyphosate is a herbicide.

This probably bears stressing. It’s a herbicide. Not an insecticide. A herbicide.

Crop spraying

Glyphosate is a herbicide, not an insecticide.

I say this because people often conflate the two – after all, they’re both chemicals you spray on plants, right? – but they are rather different beasts. Insecticides, as the name suggests, are designed to kill insects. The potential problem being that other things eat those creatures, and if we’re not careful, the insecticide can end up in places it wasn’t expected to end up, and do things it wasn’t expected to do. This famously happened with DDT, a very effective pesticide which unfortunately also had catastrophic effects on certain predatory birds when they ate the animals that had eaten the slightly smaller animals which had eaten the insects that had eaten the other insects (and so on) that had been exposed to the DDT.

Herbicides, on the other hand, kill plants. Specifically, weeds. They’re designed to work on the biological systems in plants, not animals. Often, they have no place to bind in animals and so are simply excreted in urine and faeces, unchanged. Also, since plants aren’t generally known for getting up and wandering away from the field in which they’re growing, herbicide sprays tend to stay more or less where they’re put (unless there’s contamination of waterways, but this can – and should, if the correct procedures are followed – be fairly easily avoided).

Nicotine pesticide

Nicotine is an effective insecticide. It’s also extremely toxic.

Now this is not to say we should be careless with herbicides, or that they’re entirely harmless to humans and other animal species, but we can cautiously say that, in general, they’re rather less harmful than insecticides. In fact, glyphosate in particular is less harmful than a lot of everyday substances. If we simply look at LD50 values (the amount of chemical needed to provide a lethal dose to half of a test population), glyphosate has an LD50 of 4900 mg/kg whereas, for comparison, table salt has an LD50 of 3000. Paracetamol (acetaminophen) has an LD50 of 338, and nicotine (a very effective insecticide, as well as being the active ingredient in cigarettes) has an LD50 of just 9.

Of course, there’s more to toxicity than just killing things, and that’s where it gets tricky. Yes, it might take more than a third of a kilo to kill you outright, but could a smaller amount, particularly over an extended period of time, have more subtle health effects?

But before we go any further down that rabbit hole, let’s take a look at that ‘smaller amount’. Certain campaigners (they always seem to have some sort of stake in the huge business that is organic food, ahem) would have us believe that food crops are ‘drenched’ in glyphosate, and that consumers are eating significant quantities of it every day.

Here’s a great graphic, made by Sarah Shultz of the Nurse Loves Farmer blog (reproduced with her kind permission), that answers this question nice and succinctly:

How much glyphosate?

How much glyphosate is sprayed on crops? (Reproduced with permission of Sarah Shultz)

It’s about 1 can of soda’s worth per acre. Or, if you find an acre hard to visualise, roughly ten drops for every one hundred square feet – the size of a smallish bedroom.

In other words, not a lot. It’s also worth remembering that although there is some pre-harvest spraying – particularly of wheat crops – no farmer is spraying their crops five minutes before harvest. What would be the point of that? Farmers have margins, just like any other business, and chemicals cost money. If you’re going to use them, you use them in the most efficient way you can. The point of spraying pre-harvest is to kill any weeds that might be present so that they don’t get into your harvest. This takes time to happen, so it’s done seven to fourteen days before harvesting takes place. It’s also carefully timed in the growing cycle. Once wheat turns yellow, it’s effectively dead – it’s neither photosynthesising nor transporting nutrients – so if it’s sprayed at this point, glyphosate isn’t moved from the plant into the grain of the wheat. Which means it doesn’t make it into your food.

The long and short of all this is that if there IS any glyphosate in food crops, it’s in the parts per billion range. So is that likely to be harmful?

In March 2015 the International Agency for Research on Cancer (IARC) – the cancer-research arm of the World Health Organisation – announced that glyphosate was ‘probably carcinogenic to humans’, or category 2A. It needs to be pointed out that this outcome was controversial, as this post by The Risk Monger explains. But even that controversy aside, lots of things fall into category 2A, for example smoke from wood-burning fires, red meat, and even shift work. The IARC did note that the evidence mainly involved small studies and concerned people that worked with glyphosate, not the general public, and that recommendations were partly influenced by the results of animal studies (really, go and read that Risk Monger post). The one large-cohort study, following thousands of farmers, found no increased risk.

And by the way, alcohol has been classified as a Group 1 carcinogen, meaning it’s definitely known to cause cancer in humans. If you’re worried about glyphosate in wine and beer, I respectfully suggest you have your priorities the wrong way round.

So, the tiny traces of glyphosate that might be on food definitely aren’t going to poison you or give you cancer. Are there any other health effects?

Gut bacteria

Glyphosate isn’t interfering with your gut bacteria (image: microbeworld.org)

One thing that the health campaigners like to talk about is gut health. Their logic, such as it is, follows that glyphosate passes though our body largely unchanged. Now, you might imagine this would be a good thing, but according to these particular corners of the internet, it’s exactly the opposite. Glyphosate is known to be anti-microbial, and since it’s not changed as it passes through the body, the argument goes that it gets into our guts and starts wiping out the microbes in our digestive system, which have been increasingly linked to a number of important health conditions.

It sort of makes sense, but does it have any basis in fact? Although glyphosate can act as an antimicrobial in fairly large quantities in a petri dish in a laboratory, it doesn’t have a significant effect in the parts per billion quantities that might make their way to your gut from food. Glyphosate prevents bacteria from synthesising certain essential amino acids (it does the same thing to plants; that’s basically how it works) but in the gut these bacteria aren’t generally synthesising those amino acids, because they don’t need to. The amino acids are already there in fairly large quantities; bacteria don’t waste energy making something that’s readily available. In short, glyphosate stops bacteria doing something they weren’t doing anyway. So no, no real basis in fact.

I have so far avoided mentioning GMOs, or genetically-modified organisms. “GMO” often gets muttered in the same breath as glyphosate because certain crops have been modified to resist glyphosate. If they weren’t, it would damage them, too. So the argument goes that more glyphosate is used on those crops, and if you eat them, you’ll be exposed to more of it. But, as I said earlier, farmers don’t throw chemicals around for fun. It costs them money. Plus, not-really-surprisingly-if-you-think-about-it, farmers are usually quite environmentally-conscious. After all their livelihood relies on it! Most of them use multiple, non-chemical methods to control weeds, and then just add the smallest amount of herbicide they can possibly get away with to manage the last few stragglers.

Ah, but even a little bit is too much, you say? Why not eat organic food? Then there will be absolutely no nasty chemicals at all. Well, except for the herbicides that are approved for use in organic farming, and all the other approved chemicals, famously copper sulfate and elemental sulfur, both of which are considerably more toxic than glyphosate by anyone’s measure. And, of course, organic food is much more expensive, and simply not a feasible way of feeding over seven billion people. Perhaps, instead of giving farmers a hard time over ‘intensive’ farming, we should be supporting a mixture of sustainable methods with a little bit of, safe, chemical help where necessary?

In summary, the evidence suggests that glyphosate is pretty safe. Consuming the tiny traces that might be present in food is not going to give you cancer, won’t cause some sort of mysterious ‘leaky gut’ and it’s definitely not to poison you. There is a lot of fuss about glyphosate, but it’s really not warranted. Have another slice of toast.


EDIT 2nd June 2016

After I wrote this post, a very interesting article came my way…

  • Petaluma city suspended use of glyphosate in favour of alternatives. Notable quote:“Having used the alternative herbicides over the past two months, DeNicola said crews have needed to apply the treatments more often to achieve similar results. The plants are also likely to regrow, since the root remains alive underground.The treatments are also said to be extremely pungent during application, with several workers complaining of eye irritation and one experiencing respiratory problems, DeNicola said. Those attributes have required the use of new protective equipment, something that was not required with Roundup.“It’s frustrating being out there using something labeled as organic, but you have to be out there in a bodysuit and a respirator,” he said.”

A classic example of almost-certainly unfounded fear leading to bad decision-making.


Follow The Chronicle Flask on Facebook and Twitter for regular updates and other interesting bits and pieces from around the internet.

No, ketchup does not cause cancer

ketchup and coke

Do these things really cause breast cancer? (Spoiler: no)

Less than two days into the new year, and I’d already found what might well be one of the silliest health headlines of the year. What is it I hear you ask? Well, it was in a national newspaper on New Years Day, and it was this:

Sugar found in ketchup and Coke linked to breast cancer

This, to borrow a favourite line from an online greetings card company, had me rolling my eyes so hard I could practically see my brain. Why? Because even without reading any further, I knew immediately that it was the equivalent of saying, “too much of thing found in most stuff might cause cancer!”

But let’s not be one of the 70% of users that only read the headline, let’s dig a little further. The newspaper article, which in fairness isn’t too bad – it’s just a bit of a silly headline, alludes to work carried out the University of Texas’ MD Anderson Cancer Centre. If you click on the link I’ve added back there, you’ll see that MD Anderson’s headline was:

“Sugar in Western diets increases risk for breast cancer tumors and metastasis”

Note, they just say ‘sugar’, not sugar in two apparently randomly-selected foodstuffs. The researchers divided mice into four groups, fed some a diet high in sucrose (more commonly called table sugar – in other words, the stuff in the sugar bowl) and compared them to others fed a low-sugar, ‘starch-controlled’ diet. They found that the high-sugar diet lead to increased tumour growth, particularly in mammary glands.

I’ve covered forms of sugar before but still, here’s a quick reminder before we go any further: this is a molecule of sucrose:

Saccharose2

Sucrose

Sucrose is made of two ‘bits’ joined together: one unit of fructose and one unit of glucose.

157px-Alpha-D-Glucopyranose

Glucose

These two molecules are what chemists call isomers. They contain the same number and type of atoms, just joined up differently. They’re both sugars in and of themselves. Glucose is used directly by cells in your body for energy. Fructose, on the other hand, is trickier. It has a lower glycemic index than glucose, in other words, it doesn’t raise your blood sugar as rapidly as glucose, but this doesn’t mean it’s healthier. It’s metabolised almost exclusively in the liver and, long story short, invariably ends up being converted into, and stored as, fat.

179px-Beta-D-Fructofuranose

Fructose

Fruit is high in fructose, and fructose tastes very sweet to us (sweeter than either glucose or sucrose). This is nature’s way of telling us, and other animals that might eat the fruit, that it’s high in nutrients. From the plant’s point of view, it’s an incentive to eat the fruit and, ahem, spread the seeds around.

Humans have, of course messed around with this perfectly sensible survival mechanism by stuffing all kinds of easily-available and not particularly nutrient-rich foods with fructose, and herein lies the problem. Co-author of the paper that started all this, Lorenzo Cohen, Ph.D., professor of Palliative, Rehabilitation, and Integrative Medicine, said “we determined that it was specifically fructose, in table sugar and high-fructose corn syrup […] which was responsible for facilitating lung metastasis and 12-HETE production in breast tumors.” Notice that he mentions fructose in table sugar; this is because, once you eat sucrose, it breaks down into units of glucose and fructose.

The article goes on to suggest that sugar-sweetened beverages are a significant problem, so was the newspaper wrong to pick on Coke? It’s a popular drink after all, and a standard can of Coca-Cola contains approximately 35 grams of sugar (which might come from either sucrose or high fructose corn syrup mainly depending on where you buy it). The guidance for adults is no more than 30 grams of sugar per day, so a single can of regular Coca-Cola would take you over that limit, and it’s very easy to drink two or even three cans without giving it a second thought.

sugar

Soft drinks and fruit juice both contain a lot of sugar

However, the same goes for pretty much any non-diet soft drink.  Pepsi, for example, has a similar amount. Lemonade can be even more sugary, with some drinks hitting 40 grams per 330 ml can. Ginger beer might well be the worst; there are 53 grams per 330 ml in Old Jamaica Ginger beer for example. Fruit juice is no better, with many juices containing 35 g of sugar per 330 ml, although at least fruit juice might contain some other nutrients such as vitamin C.

So really, I’d say it’s a bit unfair to single out Coke in a headline like this.

What about the ketchup (note they didn’t pick a specific brand here, just generic ‘ketchup’)?

Well, ketchup IS high in sugar. It contains about 24 grams of sugar per 100 grams. But hang on, 100 grams of ketchup is quite a lot. A more realistic serving size of a tablespoon is only about 15 grams, which works out at about 3.5 grams of sugar. Still quite a lot, but probably a drop in the ocean compared to all the sugar in cake, bread, drinks, fruit juice, breakfast cereals and the tubs of Roses and Quality Street you scoffed over Christmas. Unless you make a habit of drinking ketchup by the bottle (apparently some people do) this is frankly a ridiculous foodstuff to pick on.

I imagine that someone did a quick search for ‘foods that contain fructose’ and picked Coke because, well, everyone knows that Coke’s bad, right? So that sounds credible. And ketchup because we all sort of suspect it’s probably not that healthy, but it hasn’t been the subject of a health scare recently so that makes it stand out. Great clickbait, bad science.

mouse

Mice are not people

Plus, let’s be absolutely clear, the study was in mice. Mice are not people. While a study that shows an effect in mice is an interesting start, and may well be good reason to conduct more studies, quite possibly in humans, it’s not proof that this mechanism exists in humans. Humans have, after all, evolved to eat a very different diet to mice. There might well be a link, but this doesn’t prove it, and even if a link does exist we certainly can’t say anything about the significance or size of it from this research.

I’m not a dietician, but I’m going to go out on a (fairly sturdy) limb here and say that cutting back on sugar will not do you any harm and is likely to be a jolly good thing. Let’s also be clear that sugar in fruit juice, agave, honey etc is still sugar and is no healthier than table sugar. Eating too much of the sweet stuff is almost definitely bad for your waistline and, as we all learned as children, bad for your teeth too – something which is often overlooked but really shouldn’t be, poor dental health having been linked to other serious health problems including diabetes and heart disease.

ketchup on bread

Maybe cut back on the fried ketchup sandwiches

But, and here’s my big problem with the newspaper’s headline, none of this means that Coke and ketchup directly cause breast cancer which is how, I fear, some people will interpret it. Cut out sugary fizzy drinks by all means, and perhaps ditch the ketchup sandwiches (especially fried ones), but please don’t worry that the occasional dollop of red sauce is going to kill you. I’m pretty certain it won’t.

Follow The Chronicle Flask on Facebook for regular updates.

A small edit was made on 6th January to clarify that pure fructose isn’t used as an ingredient in Coke, but rather high fructose corn syrup.

 

 

Does drinking alcohol actually cause dehydration?

alcohol-effects

Today I came across this article: Drinking water doesn’t prevent a hangover, study says, which includes the memorable line: “[the] study concluded, the only way to prevent a hangover is to drink less alcohol.”

Now, at first sight, you might think that surely this simply another piece of work from the University of the Bleedin’ Obvious.

But hang on. Alcohol does dehydrate you, doesn’t it? Everyone knows that! After all, don’t you wee more when you go drinking, and wake up all sweaty and with a dry mouth after a ‘heavy night’? Surely this is all evidence of fluid loss? Am I really about to suggest we should consign ‘alcohol causes dehydration” to the collection of alcohol-based myths such as mixing drinks gives you a worse hangover (only if you drink more as a result), a night cap will help you sleep (only temporarily, overall it tends to disrupt sleep), drinking beer will cause a ‘beer belly’ (too much of any type of drink can cause weight gain), and so on?

Well…

1024px-Ethanol-3D-balls

There are many alcohols; ethanol is the one we drink.

Firstly, what is alcohol or, more specifically (the word ‘alcohol’ actually refers to a group of compounds), ethanol? It’s a simple molecule, containing only two carbon atoms, an oxygen and some hydrogen atoms. It’s produced, as we all learned at school (or possibly when attempting home-brewing), by yeast during the process of fermentation. Feed this clever little single-celled organism some sugar and voilà, it produces ethanol (C2H5OH) and carbon dioxide via a remarkably simple equation:

C6H12O6 –> 2C2H5OH + 2CO2

220px-Marula01

Marula fruit naturally ferments.

Humans learned this trick a long time ago and have been brewing for literally thousands of years. In fact it doesn’t even require human intervention – marlula fruit is particularly famous for becoming naturally alcoholic (although stories of monkeys and elephants using it to get drunk might be somewhat exaggerated).

We like drinking because, of course, of what it does to us. In medical terms, it’s a central nervous system depressant with significant psychoactive effects (sounds fun, eh?) In English, it reduces anxiety, making drinkers feel relaxed and happy. This accompanies a decrease in motor skills of course, which is why drinking and driving is illegal virtually everywhere (although exact definitions of what this means do vary).

But while alcohol is all natural, it’s not what you’d consider healthy. Every now and then someone drags out some data that suggests that low to moderate alcohol intake is good for you, but this sadly appears to be more wishful thinking than good science. In terms of disease, alcohol consumption has been linked with stroke, high blood pressure, several liver diseases, pancreatitis, a weakened immune system and a handful of cancers including mouth, throat, liver and breast cancers.

In fact, alcohol has been categorised by the International Agency for Research on Cancer as a group 1 carcinogen, which puts it in the company of such other delights as asbestos, radium isotopes, ultraviolet radiation, diesel exhaust and tobacco.

Enjoying-Dinner-copy

Give up alcohol before you worry about your latte ingredients.

Of course, the dose makes the poison. Lots of people enjoy low to moderate alcohol consumption quite safely. Still, I have to admit to being amused by health nuts that insist on a diet consisting of little more than raw vegetables, make a fuss about so-called GMOs, campaign for additives (none of which are anywhere close to being group 1 carcinogens) to be removed from food, and then post pictures of themselves drinking wine. You really want to improve your health? Never mind caramel colour IV in your latte, give up the booze.

So, alcohol isn’t a health food, or indeed drink. But to get back to the original question, does it cause dehydration? Well, it would appear that while it does do a lot of bad stuff health-wise, that’s not one of the bad things it does. In a study, men drank six pints of beer and were then subjected to a number of tests. As the subsequent PubMed article states: “All subjects had a slight hangover, but none was fluid depleted”.

Screen Shot 2015-08-29 at 18.22.08

Twin doctors Chris and Xand van Tulleken in a recent BBC documentary.

In a recent BBC Horizon documentary, twin doctors Chris and Xand van Tulleken collected all their urine during a night in which Xand drank 21 units of alcohol in one sitting (while his brother only had one drink), and next morning demonstrated that the volumes were the same. In other words, the excessive alcohol consumption had not, as is widely believed, had a significant diuretic effect.

Admittedly, this was only two people, and the PubMed study only involved six participants – small sample size is often an issue with such work. The Dutch study I mentioned at the start was much larger, which is one reason it’s useful. In that study, drinking water appeared to make little difference to the severity of the hangover experienced. The only thing that really mattered was, not surprisingly, how much alcohol had been consumed.

In fact it’s not well-understood what does cause hangovers. It would appear it’s linked to an immune system response. In very simple terms, getting blind drunk is a little like self-imposed flu. Drinking plenty of fluids won’t do you any harm, but it’s not actually a solution. Of course, there’s no virus involved here to keep the immune system on the warpath, so for most healthy people the best, and probably only, hangover cure is time.

So in summary, yes, we probably can chuck “alcohol causes dehydration” in with all the other alcohol myths floating around out there, but that’s not an excuse to have a pint after your workout.

Follow The Chronicle Flask on Facebook for regular updates.

But no one wants to research that; they can’t make any money from it…

A couple of my recent posts have focused on potentially dangerous ‘alternative’ treatments for medical conditions. Invariably, such posts generate comments along the lines of “I’ve been using it for years and I’m FINE” and the other favourite “ahhh but They don’t want to research it because it’s cheap and They can’t make any money from it!” (‘They’ is usually the eponymous ‘Big Pharma’).

It’s hard to argue with the first one. The friend of a friend of your uncle’s dishwasher repair main who’s smoked 40 a day for years without ever even getting a case of the sniffles doesn’t believe all that stuff about smoking being bad for you either. No one ever believes the thing they’re doing will turn out to be bad for them. Until, that is, they start getting nasty shooting pains in their left arm.

olaparib

Olaparib costs £49,000 per patient.

The other one though, well, let’s have a look at that. It’s a really common argument, especially from Americans who tend to be much more aware of the cost of medication than Brits. We on this side of the pond are somewhat shielded from the realities of specific costs by the way the National Health Service works. However, some recent decisions by NICE (The National Institute for Health and Care Excellence) have raised the issue of the price of medication in the minds of people over here as well. For example, just a few days ago it was widely reported in the press that NICE had turned down a drug called olaparib (Lynparza) – a targeted treatment for ovarian cancer – because its price tag of more than £49,000 per patient per year was considerably higher than NICE’s upper limit of of £20,000 to £30,000.

£49,000 is a lot of money, no question about it. In some places you could buy a house for that kind of money. At the very least, you could buy a big chunk of a house. For the average household it’s almost double a year’s salary. How could a year’s worth of a drug possibly be worth so much money? Surely the pharmaceutical company (AstraZeneca in this case) are having a bit of a laugh with this price tag? All the way to the bank?

Why ARE medicines so expensive?

Why ARE medicines so expensive?

Well, how much does it cost to develop a drug? A study by the Centre for the Study of Drug Development at Tufts University in Massachusetts reported that the average cost for drugs developed between 1995 and 2007 was $2.6 billion (*see update below) which, based on 2007 exchange rates, is very roughly £1.3 billion. Of course, these figures are from a few years ago – it will be more in today’s market.

Why so much? Well, it takes on average about 12 years to get a drug from the laboratory to the market (and many potential drugs fall by the wayside during the various testing processes). There are a lot of people involved, from researchers in the lab to people running clinical trials to chemical engineers who have work out how to get a small-scale lab production up to something much larger to the people who design and produce the packaging. Even if you just start adding up 12 years worth of salaries (the average salary of a chemical engineer is something like £35,000, for example), you quickly get into big numbers, and that doesn’t take the cost of offices, factories, equipment, raw materials and so on into account.

Back to olaparib and its £49,000 a year price tag. There are about 7000 ovarian cancer diagnoses in the UK each year, but it’s a very specific treatment that would probably only apply to about 450 women each year and it’s estimated to extend life by about a year so, sadly, each patient would probably only be taking it for one year. It’s difficult to get specific figures about development costs, but let’s estimate it took about £1.5 billion to develop it (probably a conservative estimate), and let’s give it 20 years to break even, since after 20 years drugs go off-patent (which means other companies can produce them), and profits immediately drop).

Are pharmaceutical companies really ripping us off?

Are pharmaceutical companies really ripping us off?

Based on those rough numbers, each year the pharmaceutical company would need to make about £75 million. Divide by 450 patients and you get (rounding up a bit) £170 thousand per patient per year – more than three times the price tag NICE was working with. To stress: this is just to cover development costs. I’m not adding any profit on here. Even if you allow for the fact that AstraZeneca are selling the drug in other countries (in the US and Europe in particular), it’s hard to see how their profit margins can be anything more than pretty small.

You might say, so what? This is someone’s life we’re talking about here. Life is priceless. Yes, of course. But unless they can break even, and in fact make some kind of profit, no pharmaceutical company is ever going to invest time in drug development. No one runs a business to deliberately make a loss. Not for long, in any case.

turpentine

Don’t let anyone convince you to swallow this stuff.

There are plenty of people out there claiming that some cheap, every-day substance can cure cancer (could be anything from a type of bleach to turpentine to baking soda, depending on the day of the week), but that ‘Big Pharma’ deliberately suppress these treatments, and/or refuse to research them, because they can’t make thousands selling them, and they would rather push their expensive (but, you know, tested) drugs.

Well no, the pharmaceutical companies can’t sell these kinds of ‘alternative’ treatments, because they’re controlled by extremely strict regulations and they can’t claim something works without rock-solid evidence. But don’t be taken in by the argument that it’s impossible to make a lot of money from selling this kind of stuff. Of course it’s possible: buy it in huge bulk, put it in small bottles with expensive-looking packaging, and the markup can be comfortably generous. Hey, if it’s possible to make money selling ‘ghost turds‘, then it’s possible to make money out of anything. And if you don’t want to actually sell it (which might upset the regulatory authorities) there are book sales, public appearances and private consultation fees. Oh yes, don’t let anyone convince you there’s not plenty of money to be made.

Besides which, it’s simply not true that medical researchers aren’t interested in ‘cheap’ substances. To quote the comedian Dara Ó Briain:

“Oh, herbal medicine’s been around for thousands of years!” Indeed it has, and then we tested it all, and the stuff that worked became ‘medicine’.

Except we shouldn’t be using the past tense; scientists continue to research this kind of thing all the time. Despite what the conspiracists might say, the people who work in these fields are genuinely interested in making people better. If they really thought baking soda could somehow cure a particular cancer, they’d be on it like a shot. Even if you don’t believe they’d do it for ‘the public good’, it’d be worth it for the prestige alone. Someone who managed to prove something like that would almost certainly be up for a Nobel Prize. The company they worked for would be using it in their marketing material forever more. You can’t buy publicity that good. (For more about this, check out this excellent article by Steven Novella.)

beetroot juice

Recent research suggests that beetroot juice could help treat high blood pressure.

Just to prove that research into simple, inexpensive stuff truly does happen, here are some examples (public health warning: I’m not advocating you experiment with any of these, I’m merely listing them to make the point. Discuss it with your doctor before you try anything):

Believe it or not, doctors like medicines that work.

Believe it or not, doctors like medicines that work.

These are just five examples. I’m certain there are many more. Researchers do look at well-known, relatively inexpensive substances if they think they might have a genuine therapeutic effect. That’s the sort of thing scientists do. The difference is that real scientists don’t rely on testimonials – the word of people who’ve “been taking it for years and never been healthier!” – they design proper, rigorous trials.

Sometimes these trials are promising, sometimes they’re not, but the substances that do turn out to be promising invariably find their way into medicine sooner or later because, essentially, doctors like medicine that works.

* Update: June 2015
After I wrote this post I came across this article on theconversation.com. It casts some doubt on the US$2.6 billion figure from The Tufts Center for the Study of Drug Development, and makes some interesting points about its calculation. In particular, it points out that more than once source has suggested the figure may be over-inflated. This could well be the case, in which case my rough estimate calculations might be off by some margin, but it’s impossible to be more accurate because pharmaceutical companies are pretty cagy about their actual costs. It is certainly the case that a number of pharmaceutical companies have existing, profitable medicines which are reaching the end of their patent lifetime and, it appears, not enough to replace them, leading to some recent mergers and acquisitions activity. A few have run into trouble: Glaxo Smith Kline issued a profit warning last year, as did the French group Sanofi SA. On the other hand, others have been doing extremely well. So are they genuinely over-charging for drugs? It’s a very difficult question, but I think it’s still safe to say that drug development is a very expensive business

Follow The Chronicle Flask on Facebook for regular updates

Please don’t eat apricot kernels

Capture

Apricot kernels do not cure cancer.

I’ll admit, I’m no huge fan of ‘alternative medicine’, particularly the ones which have been thoroughly tested and shown over and over again to be entirely ineffective (yes homoeopathy, I’m looking at you).

At best these treatments don’t work, and at worst they delay or even stop people getting the effective treatment they need. In fact, there’s an even worse possibility: they stop people from people from giving their children the treatments they need.

Ok, if you’re old enough to make decisions for yourself, and you’ve tried conventional medicine and it hasn’t worked terribly well for your particular problem, and you’ve found that, say, acupuncture somehow does make your chronic back pain a bit better, even if it is just placebo effect, then hey, it’s your money (just please don’t recommend it to anyone else who hasn’t checked out all their other options first, ok?) Also, please, please read this fantastic article which explains clearly what cancer is and what, crucially, it isn’t.

But there has surely has to be a special corner of hell reserved for people who peddle so called ‘cancer-cures’.

Medicine has moved on a lot in the last few decades. Advanced screening techniques and treatments mean that many cancers are no longer the death sentence they once were. 50% of people (in England and Wales) now survive cancer for ten years or more, which is double the figure 40 years ago. But it’s easy for a well person to say ‘cancer treatments’. They are not always quite so easy to get through. Cancer treatments – namely surgery, radiotherapy and chemotherapy – can be brutal and frequently come with a raft of unpleasant side-effects, particularly chemotherapy.

There are some people who decide that the cure is worse than the disease and personally, I think that’s their choice to make. They should have the right to make that choice, so long as it’s well-informed.

So long as it’s well-informed.

But there are people out there who are making money from desperate cancer sufferers. They sell them ineffective treatments, discourage them (directly or indirectly) from seeking or accepting the treatment they really need, and sometimes even encourage those people to use toxic substances that are likely to actually cause even more harm.

People like Roger Shelley, owner and director of The Vitamin Service Ltd. Who has just been given a six-month suspended prison sentence and his company fined £10,000 for selling potentially toxic ‘vitamins’ he claimed could cure and prevent cancer.

512px-Amygdalin_structure.svg

Amygdalin. It’s not a vitamin.

In particular, he was selling apricot kernels, which he claimed contained a ‘vitamin’ called B17. There is no such vitamin. The chemical in question is something called amygdalin (sometimes also referred to as laetrile, although they are not quite the same thing). See the picture of it? See that CN group down at the bottom? That’s a nitrile group. Potassium cyanide, the poison so beloved of crime writers, has the formula KCN, which is a compound made up of K+ and CN ions. It’s the cyanide ions, CN, that do the damage, by interfering catastrophically with the way the body uses oxygen. Now, nitriles (like amygdalin) don’t usually give up their cyanide ions easily and so aren’t, generally, anywhere near as toxic as compounds like potassium cyanide.

Unfortunately one of the enzymes in your small intestine helps to speed up the breakdown of amygdalin. Eating apricot kernels can cause severe toxicity and death due to cyanide poisoning. Yes, severe toxicity and death. Eating apricot kernels can kill you.

Before I cause mass panic I should probably point out that if you accidentally swallow one on a summer picnic, do not fear. It takes more than one to do any damage. The Food Standards Agency says it’s safe to eat one apricot kernel a day (they’re not saying you should, mind you).

The Vitamin Service was recommending that adults take 35 kernels every day. That IS enough to do damage. In fact, it’s above the dose that the FSA highlights as causing severe symptoms. In this statement, they site a case (point 15) of a woman who ate 30 apricot kernels and was later found comatose.

Worse, The Vitamin Service were also recommending that children take 10 kernels a day, “to ward off cancer”. For children, who have a smaller body mass than adults, even this smaller dose could be extremely dangerous.

Patients following The Vitamin Service’s regime reported symptoms of dizziness and cogitative problems. Classic symptoms of cyanide poisoning. When they reported these symptoms they were advised to reduce the amount for a few days before increasing it again, because the symptoms were due to ‘toxins’. Indeed they were, a toxic substance in the very products The Vitamin Service were selling.

To add insult to injury, they were charging in the region of £600 for these kernels along with a raft of other supplements they were recommending.

Shelly admitted to misleading customers and failing to warn them of the risks of B17. He has been given a six month suspended prison sentence, and his company is no longer selling apricot kernels as a cancer treatment. Which you’d think would be a good thing. Problem solved, no?

Just Google “B17 cancer” or “apricot kernels”. There are dozens of sites out there promoting it as a cancer treatment, and many still selling products. I won’t link to them here, I don’t want to give them the traffic. But it’s frightening. Please don’t believe these people. Please listen to your doctors, the real ones, the ones who have studied for years to learn everything they can about medicines and illnesses, and who have sworn an oath to “do no harm”.

There isn’t an easy, painless, magical cure for the cancer that the pharmaceutical industry is hiding from us for some reason. We all wish there was, but there isn’t. Cancer is horrible, but a lot of the time these days it’s beatable with the right treatments. And for those, you need a qualified doctor.

This story was covered in detail on The One Show on BBC One, on Monday 4th February 2015. You can watch the clip here: start at about 4:30 minutes.

There is also an excellent, very easy to follow, summary of the use of laetrile on the charity Cancer Research UK’s website. Read it here.

Finally, once again, if you’re in the unfortunate position of having been diagnosed with cancer, please, please read this excellent article. It really does help to understand the importance of targeted treatment.

Update 8th June 2015

When I wrote this post I focused on the eating of actual apricot kernels, and Roger Shelley’s conviction for selling them. It is worth pointing out that although apricot kernels definitely contain amygdalin, it’s impossible to be certain exactly how much any one kernel contains. This is always a risk with any natural product like this.

This means there is a big, huge, difference between eating apricot kernels – even a known number of them – and being exposed to a small amount of amygdalin in a controlled manner, say as part of a cancer treatment trial. In the first situation you have no idea how much of the chemical you’re being exposed to, and no one is monitoring you to check for ill effects (which you might, or might not, be aware of). It is true that otherwise toxic compounds are utilised in chemotherapy. Arsenic trioxide is used to treat a particular kind of leukaemia for example, but this doesn’t mean swallowing a teaspoon of it every day ‘just in case’ would be in any way sensible or safe.

In 2010 there was a Cochrane review of all the work previously done on amygdalin and laetrile. It reported that there was no clinical data to support the use of these substances to treat cancer, that the risk benefit of using these substances was unanimously negative (the risk of severe poisoning far outweighed any possible benefit), and recommended that no further clinical research into laetrile or amygdalin be conducted on ethical grounds.

However, since I wrote this post I have been made aware that some research is still ongoing. Well, science is about finding answers after all. For example, both of the following papers have been published since the Cochrane review:

Notice that these papers are about the specific chemical amygdalin, rather than apricot kernels. Note also that the second paper contains the words in vitro, which means outside of living organisms. In a test tube in a lab basically. This might be an interesting starting point, but it doesn’t necessarily mean that the same effect can be reproduced in living organisms which have inconvenient things like a digestive system to work around. Also, bear in mind that effective cancer treatments are highly targeted. Tossing unknown amounts of a substance into the general vicinity of a tumour and hoping it’ll have the effect you want is like throwing a bucket of paint at a piece of fine china and expecting to see pretty decorations appear.

Digestion is a particularly thorny problem with this substance: in the first paper I mentioned above (which is a review of the work done to date, rather than new research) the authors specifically point out that amygdalin is a lot more toxic when it’s taken orally than when it’s given intravenously (injected). The reason is that, as I mentioned in my original post, it’s broken down by enzymes in your small intestine. You’re going to have a hard time injecting apricot kernels; you pretty much have to eat them. Which is risky.

Also, while the authors do provide a lot of examples of the therapeutic benefits of amygdalin, they also point out that the (apparent) “antitumor mechanism of amygdalin is not completely clear”, that “clinical trials and large retrospective studies showed that [it] had no stable antitumor effect” and that adverse reactions have been reported, particularly following large doses.

So, while this compound might be a subject for further research, I stand by my original point. Don’t eat apricot kernels.

Further update, 20th August 2015

I’ve recently been made aware of a someone called Dr Philip Binzel and, what appears to be, a rather famous book called “Alive and Well“. In this book, Dr Binzel describes his treatment of cancer patients using dietary changes and supplements, including laetrile. I can find remarkably little information about Dr Binzel and his credentials beyond what’s described in this book. However, it is a matter of public record that he died on June 6, 2003. So take any source discussing his work in the present tense with a large pinch of salt.

Another recent post on this blog which may be of interest addresses this common complaint, “no one wants to research that; they can’t make any money from it!

Follow The Chronicle Flask on Facebook for regular updates and other interesting tidbits.

Comments have now been closed on this post. Please do not post in the comments section of other posts in an attempt to get around this. Such comments will be deleted.