Feet of clay? The science of statues

Concept art for the Terry Pratchett statue (c) Paul Kidby

Concept art for the Terry Pratchett statue (c) Paul Kidby

Yesterday we received the exciting news that a statue to commemorate Sir Terry Pratchett and his work has been approved by Salisbury City Council. Hurrah! So, even if we don’t quite manage to get octarine into the periodic table (and thus into every science textbook for ever more), it’s looking very likely that there will still be something permanent to help keep his memory alive.

But this got me thinking about everyday chemistry (who am I kidding, I’m always thinking about everyday chemistry!) and, in particular, bronze – the material from which the statue will be made.

Bronze, I hear you say, what’s that good for apart from, well, statues? And maybe bells? Is it really that interesting?

Well, let’s see. Bronze is an alloy. Alloys are mixtures that contain at least one metal, but they’re stranger than the word ‘mixture’ might perhaps suggest. Imagine combining, say, sand and stones. You still be able to see the sand. You could see the stones. You could, if you could be bothered to do it, separate them out again. And you’d expect the mixture to behave like, well, stony sand.

Alloys aren’t like this. Alloys (other well-known examples include steel, brass and that silver-coloured stuff dentists use for filling teeth) look, on all but the atomic level, like pure metals. They’re bendy and shiny, they make pleasing ringing sounds when you hit them and they’re good electrical conductors. And unlike more simple mixtures, they’re difficult (though not impossible) to separate back into their constituents.

Perhaps the most interesting this about alloys is that their properties are often very different to any of the elements that went into making them. Bronze, in particular, is harder than either tin or copper, and hence The Bronze Age is so historically significant. Copper is one of the few metals that can (just about) be found in its pure form, and so is one of the oldest elements we know, going back at least as far as 9000 BC. But while quite pretty to look at, copper isn’t ideal for making tools, being fairly soft and not great at keeping an edge. Bronze, on the other hand, is much more durable, and was therefore a much better choice for for building materials, armour and, of course, weapons. (War, what is it good for? Er, the development of new materials?)

Hephaestus was the God of fire and metalworking; according to legend he was lame.

Hephaestus was the God of metalworking. According to legend he was lame, could it have been because of exposure to arsenic fumes?

Today we (well, chemists anyway) think of bronze as being an alloy of tin and copper, but the earliest bronzes were made with arsenic, copper ores often being naturally contaminated with this element. Arsenical bronzes can be work-hardened, and the arsenic could, if the quantities were right, also produce a pleasing a silvery sheen on the finished object. Unfortunately, arsenic vaporises at below the melting point of bronze, producing poisonous fumes which attacked eyes, lungs and skin. We know now that it also causes peripheral neuropathy, which might be behind the historical legends of lame smiths, for example Hephaestus, the Greek God of smiths. Interestingly, the Greeks frequently placed small dwarf-like statues of Hephaestus near their hearths, and this is might be where the idea of dwarves as blacksmiths and metalworkers originates.

Tin bronze required a little more know-how (not to mention trade negotiations) than arsenical bronze, since tin very rarely turns up mixed with copper in nature. But it had several advantages. The tin fumes weren’t toxic and, if you knew what you were doing, the alloying process could be more easily controlled. The resulting alloy was also stronger and easier to cast.

teaspoon in mugOf course, as we all know, bronze ultimately gave way to iron. Bronze is actually harder than wrought iron, but iron was considerably easier to find and simpler to process into useful metal. Steel, which came later, ultimately combined superior strength with a relatively lower cost and, in the early 20th century, corrosion resistance. And that’s why the teaspoon sitting in my mug is made of stainless steel and not some other metal.

Bronze has a relatively limited number of uses today, being a heavy and expensive metal, but it is still used to make statues, where heaviness and costliness aren’t necessarily bad things (unless, of course, someone pinches the statue and melts it down – an unfortunately common occurrence with ancient works). It has the advantages of being ductile and extremely corrosion resistant; ideal for something that’s going to sit outside in all weathers. A little black copper oxide will form on its surface over time, and eventually green copper carbonate, but this is superficial and it’s a really long time before any fine details are lost. In addition, bronze’s hardness and ductility means that any pointy bits probably won’t snap off under the weight of the two-millionth pigeon.

So how are bronze statues made? For this I asked Paul Kidby, who designed the concept art for the statue. He told me that he sculpts in Chavant, which is an oil-based clay. It’s lighter than normal clay and, crucially, resists shrinking and cracking. He then sends his finished work away to be cast in bronze at a UK foundry, where they make a mould of his statue and from that, ultimately (skipping over multiple steps), a bronze copy. Bronze has another nifty property, in that it expands slightly just before it sets. This means it fills the finest details of moulds which produces a very precise finish. Conveniently, the metal shrinks again as it cools, making the mould easy to remove.

And just for completeness, Paul also told me that the base of the statue will most likely be polished granite, water jet cut with the design of the Discworld sitting on the back of Great A’Tuin. I can just imagine it – it’s going to be beautiful.

Follow The Chronicle Flask on Facebook and Twitter for regular updates.

Bronze, humbugs, wallpaper and electronics: what’s your favourite element?

As a chemistry teacher I’m sometimes asked for my favourite element. Don’t tell anyone, but I don’t really have a single favourite. That would be a terribly boring answer though, so I usually pick something to make a relevant point. Carbon, for example, for being the stuff of life, for having a whole third of chemistry – organic chemistry – devoted to its compounds, and because diamonds are fascinating and really very pretty things. Or sometimes I go for xenon, for being a noble gas, for its potential use as an anaesthetic, and just because its name starts with an X (have a go at this: name five words that start with X without googling*).

And then, if I think we’ve got time for a story, I might go for the famous and much-maligned element number 33: arsenic (As).  After all, if it weren’t one of the world’s most famous poisons you’d have to love it just for having the word ‘arse’ in its name.

arsenic poison bottle

So, a little background. It’s the 20th most common element in the Earth’s crust, and is actually one of the oldest known elements. It was officially first documented around 1250 by a Dominican friar called Alvertus Magnus but it’s been used for more than 3000 years, going back as far as the bronze age when it was added to bronze to make it harder. It’s a metalloid, which means it’s neither quite metal nor non-metal, and these days its most important use is in the electronics industry.

There are many, many interesting stories associated with arsenic. One of my personal favourites, if that’s the right word, is the story of the Bradford Sweets Poisoning. Back in 1858 a Bradford confectioner known as ‘Humbug Billy’ was buying his mint humbugs from another local character called Joeseph Neal. At the time, sugar was expensive so Neal was in the habit of cutting it with something called ‘daft’, a mysterious substance that could contain anything from limestone to plaster of Paris. Neal sent his lodger to the local pharmacy to collect the daft. The druggist was ill, and somehow or other his assistant managed to sell Neal’s lodger 12 pounds of arsenic trioxide (you might imagine this was an expensive error, but arsenic was actually surprisingly cheap: half an ounce cost about the same as a cup of tea).

The mistake went undetected, despite the sweetmaker who worked for Neal suffering symptoms of illness during the sweet-making process, and despite the resulting humbugs looking so different from normal that Humbug Billy managed to buy them from Neal at a discount. Humbug Billy himself promptly became ill after eating the sweets, but nevertheless still sold 5 pounds of them from his market stall that day. Subsequently about 20 people died and a further 200 became ill. To start with the deaths were blamed on cholera, common at the time, but soon they were traced to the sweet stall. Later analysis showed that each humbug contained enough arsenic to kill two people.

This tragic tale led to The Pharmacy Act 1868 and the requirement for proper record keeping by pharmacists. Ultimately it also led to legislation preventing the adulteration of foodstuffs, such as for example, oh I don’t know, sneaking horse into something labelled beef.

Historically arsenic was also used in dyes and pigments, perhaps most famously Scheele’s Green – also known as copper arsenite and invented by Carl Wilhelm Scheele in 1775 – produced a wonderful green colour that was used to dye wallpaper, fabrics, added to paints, children’s toys and even sweets. Many poisonings in Victorian times were linked to toxic home furnishings and clothing. In fact, this probably explains the superstition that green is an unlucky colour, especially for children’s furnishings and clothes. Arsenic poisoning being very unlucky indeed. Next time you’re near a baby store, have a look: even today (arsenic pigments now long defunct, thank goodness) you still don’t see that many green things.

One of the most famous people to die from arsenic poisoning was probably Napoleon. Originally thought to have been deliberately poisoned, analysis of his hair samples in 2008 demonstrated that his exposure had been long-term rather than sudden, and was probably due to the lovely green wallpaper and paint decorating the room in which he’d been confined.

Then there’s George III, the famously ‘mad King George’. His episodes of madness and physical symptoms were linked to the disease porphyria, and 2004 studies of samples of his hair also found very high levels of arsenic which may well have triggered his symptoms. Ironically, he may have been exposed to arsenic as part of his medical treatment.

In fact historically arsenic was used to treat many medical complaints. It’s even been used as an aphrodisiac, thanks to the fact that small doses stimulate blood flow. In 1851 it was reported that peasants in Styria, a remote region in Austria, were in the habit of swallowing solid lumps of the stuff that, fortunately, passed through their digestive system relatively intact. However they absorbed just enough to given the women a rosy glow and the men an increased libido – resulting in something of a population boom. Upon hearing about this British manufacturers immediately began selling arsenic-containing beauty products, including soap and skin treatments, with predictably tragic results.

Thanks to its toxicity arsenic is used in pesticides, herbicides and insecticides, although these uses are gradually being phased out. Despite being notoriously poisonous to most organisms, there are interestingly some species of bacteria whose metabolism relies on arsenic. Arsenic turns up naturally in groundwater and is absorbed by plants such as rice, as well turning up, in the form of arsenobetaine, in mushrooms and fish. Don’t worry though, this particular arsenic compound is virtually non-toxic.

Today gallium arsenide, with the brilliant chemical formula GaAs, is one of biggest uses of arsenic. It’s a semiconductor, used in the manufacture of many electronic devices, including solar cells. Its electronic properties are, in some ways, superior to silicon so despite its inherent dangers its important stuff.

So it definitely has one of the most fascinating histories of any of the elements, and I’ve only mentioned a tiny number of the many, many arsenic-related stories out there.  From the bronze age to the computer age, arsenic has been with us, both friend and foe, and will be with us for a lot longer yet.

So, what’s your favourite element? Tell me and maybe I’ll write about it in a future post!


* betcha said xenon (of course), xylophone, xi and xu if you play Scrabble, x-ray and maybe xylem. Am I right?