What IS a chemical?


You at the back there! Get your nose out of that dictionary and pay attention!

What do we mean when we use the word “chemical”? It seems like a simple enough question, but is it, really? I write about chemicals all the time – in fact my last WhatCulture article was about just that – and I’ve mentioned lots of different definitions before. But I’ll be honest, some of them have bothered me.

I don’t often like the definitions you find in dictionaries. Lexicography and chemistry don’t seem to be common bedfellows, and dictionary compilers haven’t, generally speaking, spent their formative years being incessantly nagged by weary chemistry teachers about their choice of vocabulary.

For example, in the Cambridge Dictionary we find:
any basic substance that is used in or produced by a reaction involving changes to atoms or molecules.”

Hm. Firstly, “basic” has a specific meaning in chemistry. Obviously the definition doesn’t mean to imply that acids aren’t chemicals, but it sort of accidentally does. Then there’s the implication that a chemical reaction has to be involved. So inert substances aren’t chemicals? Admittedly, “used in” doesn’t necessarily imply reacts – it could be some sort of inert solvent, say – but, again, it’s bothersome. Finally, “atoms or molecules”. Ionic substances not chemicals either, then?

Yes, it’s picky, but chemists are picky. Be glad that we are. A misplaced word, or even letter, on a label could have serious consequences. Trust me, you do not want to mix up the methanol with the ethanol if you’re planning cocktails. Similarly, fluorine is a whole other kettle of piranhas compared to fluoride ions. This stuff, excuse the pun, matters.

Dictionary definitions have their problems.

Dictionary definitions have their problems.

Let’s look at some more definitions (of the word as a noun):

The Free Dictionary tells us that a chemical is:
“A substance with a distinct molecular composition that is produced by or used in a chemical process.”

Merriam Webster says:
“of, relating to, used in, or produced by chemistry or the phenomena of chemistry <chemical reactions>”

And Dictionary.com goes with the simple:
“a substance produced by or used in a chemical process.”

That idea that a chemical reaction must be involved somehow seems to be pervasive. It’s understandable, since that’s the way the word is mostly used, but it’s not really right. Helium, after all, is still very much a chemical, despite being stubbornly unreactive.

Possibly the best of the bunch is found in the Oxford Living Dictionary:
“A distinct compound or substance, especially one which has been artificially prepared or purified.”

Not bad. Well done Oxford. No mention of chemical reactions here – it’s just a substance. We do most often think of chemicals as things which have been “prepared” somehow. Which is fair enough, although it can lead to trouble. In particular, ridiculous references to “chemical-free” which actually mean “this alternative stuff is naturally-occurring.” (Except of course it often isn’t: see this article about baby wipes.) The implication, of course, is that thing in question is safe(r), but there are lots and lots of very nasty chemicals in nature: natural does not mean safe.

You keep using that word. I do not think it means what you think it means.

Sometimes people will go the other way and say “everything is chemicals.” We know what this means, but it has its problems, too. Light isn’t a chemical. Sound isn’t a chemical. All right, those are forms of energy. What about neutrinos, then? Or a single proton? Or a single atom? Or, going the other way, some complicated bit of living (or once living) material? In one debate about this someone suggested to me that a “chemical was anything you could put in a jar,” at which point I pedantically said, “I keep coffee in a jar. Is that a chemical?” Obviously there are chemicals in coffee, it works from the “everything is chemicals” perspective, but it’s a single substance that’s not a chemical.

Language is annoying. This is why chemists like symbols and numbers so much.

Anyway, what have we learned? Firstly, something doesn’t necessarily have to be part of a chemical reaction to be a chemical. Secondly, we need to include the idea that it’s something with a defined composition (rather than a complex, variable mixture, like coffee), thirdly that chemical implies matter – light, sound etc don’t count, and fourthly that it also implies a certain quantity of stuff (we probably wouldn’t think of a single atom as a chemical, but collect a bunch together into a sample of gas and we probably would).

So with all that in mind, I think I shall go with:

So what IS a chemical?

A chemical is…

(Drum roll please….)

Any substance made of atoms, molecules and/or ions which has a fixed composition.

I’m not entirely convinced this is perfect, but I think it more or less works.

If you have a better idea, please do comment and let me know!

Like the Chronicle Flask’s Facebook page for regular updates, or follow @chronicleflask on Twitter. In need of a groovy new mug? Check out this page.

All comments are moderated. Abusive comments will be deleted, as will any comments referring to posts on this site which have had comments disabled.


Any old ions?

The other day, thanks to an expedition to the swimming pool, I found myself drying my hair twice in one day. As I did so it occurred to me that the process was a lot faster at home with my old, battered hair dryer that it had been in the pool changing rooms.

I pondered variables (what can I say, I’m a scientist). I hadn’t washed my hair at the pool, I’d just rinsed it (hence the need to wash it again later) which meant no shampoo and, critically, no conditioner. Does conditioner’s presumably slightly hydrophobic nature help your hair to shrug off extra moisture? This didn’t seem like it ought to make that much difference. It seemed much more likely that the difference was simply due to the hair dryer itself.


My battered old hair dryer.

And this got me thinking about the nature of my much-loved, rather battered, bright red hair dryer.

I’m going to ‘fess up here. I didn’t buy this hair dryer because I’d carefully researched its specifications and features and decided it was the best model for the job. No, if I’m honest I bought it because it was red and all the others were boring black and silver. Rational eh?

However, I do remember something about this particular hair dryer, and you can just about see a reference to this feature on the photo. Namely, it apparently contains an “ionic generator”. The little dial that you can see in the middle of the photo (set to orange, which if I recall correctly means, ‘maximum ions’) apparently adjusts the ion levels.

At the time I did try to find out exactly what the technology might be. I recall it was difficult – there didn’t seem to be much information out there – and since to be honest I didn’t care that much so long as it dried my hair, and it wasn’t particularly expensive (and it was red, RED!) I bought it anyway.

It only takes a quick glance at Amazon to see that the idea has not gone away. There are lots of ‘ionic’ hair dryers on the market, making claims such as, “Ionic conditioning with 90 per cent more ions“, “Heat-balancing ionic technology for condition and shine and a frizz-free finish“, “stylish dryer with ionic technology–seals in moisture to the hair cuticle for increased shine and silky, glossy hair” and the simple “4X More Ions“.


Ok, well first of all what are ions? Whereas most people have a faint idea what atoms and molecules are, far fewer are confident to describe ions – despite the fact that they are firmly a part of the compulsory GCSE Science syllabus and were, of course, also included in  O-level Chemistry before that. Exactly why this should be is tricky to explain. Possibly it’s simply because ‘atoms’ and ‘molecules’ do occasionally crop up in everyday speech, whereas ions are that bit more obscure. Possibly it’s because children learn about atoms in the most basic terms quite early on, and come back to the idea regularly, but ions only turn up relatively briefly (unless, of course, you choose to study A-level Chemistry). There may be an element (hoho) of confusion over the fact that element 26 is called ‘iron’, which in most English accents sounds the same as ‘ion’. And just to really confound everyone, there are such things as iron ions.

But I think the most likely is that ions are a bit tricky to understand.

I’ll have a go.

Ions are charged particles.

There, that was easy, wasn’t it?

What do you mean, what does ‘charged’ mean? It means they have either a positive or negative charge.

What do you mean, ‘what does that mean’?

Oh all right. All right. Back to basics.

helium atom

A helium atom containing a tiny nucleus made up of two protons and two neutrons (red and blue), surrounded by an ‘electron cloud’. 1 fm = 0.0000000000010 millimetres.

First of all we need to understand a bit about atoms. Atoms are made up of two parts. There is the nucleus, which is made up of protons and neutrons (except for hydrogen’s nucleus, which is just a proton) and then, whizzing around that, are electrons. Electrons are quite fiddly things that behave frankly very oddly. In particular, they don’t actually drift around atoms in stately orbits as shown in most diagrams. In fact, they are sort of there and sort of not-there at the same time, and chemists talk about an ‘electron cloud’ as a result. An electron cloud need not contain lots of electrons (this depends on the size of the atom) – it just describes an area where you might find one or more electrons.

Anyway, that’s all a bit complicated and for our purposes it doesn’t really matter – all we need to know is that there’s a nucleus in the middle and electrons around it.

Electrons have a negative charge, protons have a positive charge, and neutrons have no charge. It’s quite difficult to rigorously define what I mean by ‘charge’ without getting into some tricky maths and physics. If you are ok with the idea of negative numbers (who hasn’t had an overdraft at some point or another?) then think of it like this: electrons are -1 and protons are +1 (and neutrons are 0). If you have one proton and one electron, the overall ‘balance’ is zero – their charges cancel each other out. In the case of helium, there are two protons and two electrons. This neat bit of balancing is no accident: it’s the case for all atoms. Carbon has 6 protons and 6 electrons. Oxygen has 8 protons and 8 electrons. Calcium has 20 protons and 20 electrons, and so on.

If the electrons and protons aren’t balanced for some reason (usually as a result of a chemical reaction) then the thing that you were calling an atom a moment ago stops being an atom and becomes, wait for it….

An ion!

Oxygen atoms have 8 protons and 8 electrons, but oxygen ions (properly called oxide ions) have 8 protons and 10 electrons. Which means they have a bit more minus than plus. They are, if you like, a bit overdrawn. If you add it up, you find the number works out as -2. And so we say that oxide ions have a charge of -2, and chemists (who are lazy) write this as O2-. Which is not, we must be careful here, the same thing as O2. That means two oxygen atoms joined together, to make an oxygen molecule. What do you mean it’s confusing?

One more example then. Calcium atoms have 20 protons and 20 electrons, but calcium ions have 20 protons and 18 electrons. Add that up and you get +2. We say that calcium ions have a charge of +2, and write Ca2+(and there’s no such thing as Ca2, so that’s one less thing to worry about).

Where have we got to? Ions are charged particles, and that means that they either have a positive charge or a negative charge. These charges are typically between 1 and 3, positive or negative.

mineral water label

Fizzy mineral water, chock full of lovely ions.

Ions are very important, because they form during chemical reactions and many everyday substances are made up of ions. For example table salt, sodium chloride, is made up of Cl ions and Na+ ions.

Tap water, and indeed bottled water, are full of ions. Tap water has chloride ions (chlorinated water is a jolly good thing, assuming you don’t want typhoid, and is definitely not harmful regardless of what your nearest quack might try and tell you). It might also have fluoride ions, which are also very good for your general health (again, there’s lots of nonsense spread about this). Both tap and mineral water usually contain some sodium ions and some calcium ions. The ion balance does affect the taste – the more sodium there is the more salty the water tastes, for example – but that’s about it really. The ions don’t give the water any special properties except, perhaps, the ability to conduct electricity (which pure water, as in just H2O, actually does really badly).

Having explained ions, let’s get back to hair dryers for a moment. Ionic hair dryers claim to produce streams of negatively-charged ions. They usually claim to use something like the mineral tourmaline to do this, but despite much searching I struggled to find out much about how this was supposed to work or, most crucially, what the negative ions actually are. Negative ions are not a thing in and of themselves. They must be ions formed from atoms, so which element? Or elements?

After much hunting I eventually came upon an interesting piece written by Andrew Alden, at about.com. He explains that tourmaline has an interesting trick called pyroelectricity, which means that it does become charged when heated. The ancient Greeks even knew about this: in 314 BC Theoprastus noticed that tourmaline (called lyngourion at the time) attracted sawdust and bits of straw when heated.

Ed Trollope, from Things We Don’t Know, helpfully explained this pyroelectric effect as follows: the crystal structure of tourmaline becomes polarised (in other words the charges already in the structure become unevenly distributed) if you change its temperature. This results in a voltage across the crystal, which in turn leads to a small current being generated.

But I’m still unclear what the ions, if they exist, actually are. And the problem is that if you search for this, the first umpteen links are all pure and utter nonsense. Tourmaline is a complicated mineral that contains a whole host of different metal ions as well as oxygen, OH (hydroxide) and fluorine. Does it produce oxide ions, O2-? These are very reactive and wouldn’t hang around for any useful length of time. And if they did they would surely be harmful. Presumably they would cause the production of ozone (definitely not a good thing). Are the manufacturers using the word ‘ions’ when they actually mean ‘electrons’? They are not the same thing of course, but perhaps ‘ions’ seemed like a friendlier word.

Electrons would reduce static in your hair, but then static is short-lived anyway. Would it speed up drying time? None of the explanations I’ve actually seen for this including, most memorably, “The negative ions break down water molecules to one-fifth of their size” (errrr, what?), provide a really satisfactory, scientific explanation as to why it should. Or why it should ‘seal water into the hair’, whatever that means. It is feasible that the reduction of static could help keep the hair strands separate, which might help, but surely brushing or even running your fingers through your hair would have a much bigger effect. What I’m also not clear on is whether the tourmaline in your hair dryer carries on producing streams of ions/electrons indefinitely, or whether it becomes degraded over time. Which you would expect, if the charged particles are coming from the tourmaline itself. Is my battered old hair dryer really doing anything at all anymore, if it ever did?

It’s all very unsatisfactory. My best guess? Ionic hair dryers do reduce static build-up in hair, which would leave it smoother immediately after drying. Conditioner and styling products will also help with this mind you, and will probably have a more significant effect. The rest, I strongly suspect, is pure woo. And my hair dryer dries my hair faster simply because it runs hotter and with a faster airflow than the cheap, basic models in the swimming pool changing rooms.

But if you know better, I’d genuinely love to hear from you.

Why weigh atoms that way?

A couple of days ago I was listening to the latest Radiolab podcast. If you’ve never listened to one of these, you really should. They are beautifully produced and, without fail, utterly fascinating. Over the last year or so I’ve learned about a possible cure for a disease with a 100% mortality rate, an apocryphal Russian story about horses frozen into a block of ice, and a new theory for the end of the dinosaurs where, if I understood it correctly, they were essentially grilled to death. Episodes of Radiolab always feel like a thoroughly good use of brain-time.

Anyway, if you’re still with me and haven’t dashed off to immediately download some of these little gems, the most recent episode is about weights and measures and how we’ve standardised them over the years. In particular the kilogram, which is the last physical standard in use, although possibly not for long (listen to the podcast).


So what are the scales made of…?

This got me thinking about atoms and, in particular, how we decide their mass. This matters you see, because the mass of atoms tells us chemists how much stuff to use. If I want a saline solution with a particular concentration, all I need do is look up the numbers on the periodic table, weigh out the appropriate amount of salt and dilute it with the appropriate amount of water. And if you’re a patient who needs a saline drip, you’d better hope I did it correctly.

Anyway, if you remember your periodic table (which of course you do, but just in case, here’s a picture) all the elements come with two numbers.

The Periodic Table

One of these numbers is the atomic number, which is the number of protons in the nucleus of each atom of the element. Conveniently, nature has managed to produce an atomic nucleus for each number between 1 and, at last count, 118 and if you ‘read’ the periodic table from left to right, top to bottom, you’ll see the numbers go up one at a time.

The other number, relative atomic mass, is a bit less tidy. It still goes up as you go along the periodic table, but in less regular jumps of roughly between one and three.  Without going into lots of detail, relative atomic mass is standardised against 112 the mass of carbon-12. Which begs the question, why? The more mathematically aware will have clocked that 112 of 12 is, well, 1. So why don’t we compare all the elements to hydrogen, which actually has a mass of 1? Or if that’s infeasible for some reason why not, I don’t know, choose 19 of beryllium-9, or 128 of silicon-28?

Well actually, almost exactly 200 years ago now, atomic mass (called atomic weight, at the time) was originally compared to hydrogen, and it was thought that all elements would have masses which were exact multiples of hydrogen’s.

The problem with this was that as measuring techniques became more sophisticated it became clear that some elements were inconveniently failing to follow the rule. In fact, some were downright contrary, like chlorine which appeared to have a mass which wasn’t even a whole number.

This was, at least partially, sorted out in 1932 when James Chadwick proved the existence of neutrons. The existence of isotopes had already been suggested, but this finally cleared up what the pesky things actually were. It turns out some atoms are fatter than others, having one or two more uncharged particles in their nuclei. This doesn’t change what atom they are – they still have the same number of protons – but it does make them a bit heavier. Take a sample of pure chlorine, for example, and you find that roughly three quarters of the atoms in it have a mass of 35, whereas the other quarter have a mass of 37. These are the isotopes of chlorine: imaginatively named chlorine-35 and chlorine-37. Work out the weighted average of the two and you get 35.5, which is the number you see on periodic tables.

In the mid-20th century something of a minor squabble between chemists and physicists broke out (chemists and physicists often squabble: they’re a bit like the English and the French: they like to visit each other but only so that they can moan about how annoying the other lot are and how badly they do everything). By this time had been a switch from using hydrogen (the lightest element) to oxygen as the standard to which other elemental masses were compared. This was mainly for the convenience of chemical analysis: oxygen combines with a lot of things to make straightforward oxides, whereas hydrides are less common and trickier to work with. Plus, large quantities of hydrogen gas are a bit (in the sense of an elephant being a bit heavy, or cyanide being a bit poisonous) of an explosion risk. Oxygen causes other things to burn jolly nicely, but isn’t actually flammable itself. If you can manage to keep it away from other flammable stuff it’s a far safer option.

The problem was that chemists were using a mass scale based on assigning the number 16 to a natural mixture of oxygen (which contains mostly oxygen-16, with little bits of oxygen-17 and oxygen-18). Physicists, on the other hand, had instead assigned the number 16 to the isotope oxygen-16, which they had isolated using the technique of mass spectrometry.

Josef Mattauch

Physicist Josef Mattauch

You may think the physicists’ method sounds more logical, but the chemists’ reasoning was that in naturally-occurring compounds there would be a mixture of isotopes, so it made sense to use a number based on that mixture since you never actually encounter one atom on its own. Either way, the result was differences in the numbers, admittedly some way down the decimal places, but none the less a difference. Of course it was possible to convert between the two, but at the time scientists were fiddling with such tricksy things as nuclear energy and, of course, bombs. Even a tiny discrepancy in the nth decimal place was potentially catastrophic. Something had to be done.


Chemist Edward Wichers

In 1961 a compromise was agreed, thanks largely to the combined efforts of the physicist Josef Mattauch and the chemist Edward Wichers, who set about persuading their respective groups to be reasonable and play nicely with each other.

The result was that carbon-12 was assigned a mass of exactly 12 and the relative atomic mass scale became based on that. The choice of carbon was, to an extent, somewhat arbitrary. It suited the physicists, who were already using carbon as a standard for mass spectrometry. It fell in between the two previous values (1 for hydrogen and 16 for oxygen), which meant it wouldn’t throw every existing piece of work out by too much. In particular, chemists weren’t keen on switching to the physicists’ method of 116 of the oxygen-16 isotope, because it would change their numbers quite significantly. Switching to 112 of carbon-12 meant, surprisingly, a smaller change. Carbon is also, of course, a naturally abundant element and it was easy to get samples of pure carbon.

And that, as they say, is that. The carbon-12 scale is still used today, over 50 years later, and it’s not going anywhere. Hydrogen is officially 112 the mass of carbon-12, and we use carbon-12 because, basically, it was the only option the chemists and physicists would agree on. Hey, it’s as good a reason as any.