2019: The Year of the Periodic Table

The Periodic Table

2019 is the International Year of the Periodic Table

In case you missed it, 2019 is officially the International Year of the Periodic Table, marking 150 years since Dmitri Mendeleev discovered the “Periodic System”.

Well, this is a chemistry blog, so it would be pretty remiss not to say something about that, wouldn’t it? So, here’s a really quick summary of how we got to the periodic table we all know and love…

Around 400 BCE, the Greek philosopher Democritus (along with a couple of others) suggested that everything was composed of indivisible particles, which he called “atoms” (from the Greek atomos). The term ‘elements’ (stoicheia) was first used around 360 BCE by Plato, although at that time he believed matter to be made up of tiny units of fire, air, water and earth.

Skipping over a few centuries of pursuing what was, we know now, a bit of a dead-end in terms of the whole earth, air, fire and water thing, in 1661, Robert Boyle was probably the first to state that elements were the building blocks of matter and were irreducible but, and this was the crucial bit, that we didn’t know what all the elements were, or even how many there might be.

Antoine Lavoisier wrote one of the first lists of chemical elements.

Antoine Lavoisier (yep, him again) wrote one of the first lists of chemical elements, in his 1789 Elements of Chemistry. He listed 33 of them, including some that turned out not to be elements, such as light.

Things moved on pretty quickly after that. Just thirty years later, Jöns Jakob Berzelius had worked out the atomic weights for 45 of the 49 elements that were known at that point.

So it was that by the 1810s, chemists knew of 50 or so chemical elements, and had atomic weights for most of them. It was becoming clear that more elements were going to turn up, and the big question became: how do we organise this ever-increasing list? It was a tricky problem. Imagine trying to put together a jigsaw puzzle where two-thirds of the pieces are missing, there’s no picture on the box, and a few pieces have been tossed in from other puzzles for good measure.

Enter Johann Döbereiner, who in 1817 noticed that there were patterns in certain groups of elements, which he called triads. For example, he spotted that lithium, sodium and potassium behaved in similar ways, and realised that if you worked out the average atomic mass of lithium and potassium, you got a value that was close to that of sodium’s. At the time he could only find a few triads like this, but it was enough to suggest that there must be some sort of structure underlying the list of elements.

In 1826 Jean-Baptiste Dumas (why do all these chemists have first names starting with J?) perfected a method for measuring vapour densities, and worked out new atomic mass values for 30 elements. He also set the value for hydrogen at 1, in other words, placing hydrogen as the “first” element.

Newland’s table of the elements had “periods” going down and “groups” going across, but otherwise looks quite familiar.

Next up was John Newlands (another J!), who published his “Law of Octaves” in 1865. Arranging the elements in order of atomic mass, he noticed that properties seemed to be repeating in groups of eight. His rows and columns were reversed compared to what we use today — he had groups going across, and periods going down — but apart from that the arrangement he ended up with is decidedly familiar. Other chemists, though, didn’t appreciate the musical reference, and didn’t take Newlands very seriously.

Which brings us, finally, to Dmitri Mendeleev (various other spellings of his name exist, including Dmitry Mendeleyev, but Dmitri Mendeleev seems to be the most accepted one). His early life history is a movie-worthy story (I won’t go into that else we’ll be here all day, but check it out, it’s really quite amazing). When he was just 35 he made a formal presentation to the Russian Chemical Society, titled The Dependence between the Properties of the Atomic Weights of the Elements, which made a number of important points. He noted, as Newlands had already suggested, that there were repeating patterns in the elements, or periodicity, and that there did indeed seem to be connections between sequences of atomic weights and chemical properties.

Dmitri Mendeleev suggested there were many elements yet to be discovered.

Most famously, Mendeleev suggested that there were many elements yet to be discovered, and he even went so far as to predict the properties of some of them. For example, he said there would be an element with similar properties to silicon with an atomic weight of 70, which he called ekasilicon. The element was duly discovered, in 1886 by Clemens Winkler, and named germanium, in honor of Germany: Winkler’s homeland. Germanium turns out to have an atomic mass of 72.6.

Mendeleev also predicted the existence of gallium, which he named ekaaluminium, and predicted, amongst other things, that it would have an atomic weight of 68 and a density of 5.9 g/cm3. When the element was duly discovered by the French chemist Paul Emile Lecoq de Boisbaudran, he first determined its density to be 4.7 g/cm3. Mendeleev was so sure of his prediction that he wrote to Lecoq and told him to check again. It turned out that Mendeleev was right: gallium’s density is actually 5.9 g/cm3 (and its atomic weight is 69.7).

Despite constructing the one thing that every chemist over the last 150 years has spent years of their life poring over, Mendeleev was never awarded the Nobel Prize for Chemistry. He was nominated in 1906, but the story goes that Svante Arrhenius — who had a lot of influence in the Royal Swedish Academy of Sciences — held a grudge against Mendeleev because he’d been critical of Arrhenius’s dissociation theory, and argued that the periodic system had been around for far too long by 1906 to be recognised for the prize. Instead, the Academy awarded the Nobel to Henri Moissan, for his work on isolating fluorine from its compounds (no doubt impressive, not to mention dangerous, chemistry).

Henry Moseley

Henry Moseley proposed that atomic number was equal to the number of protons in the nucleus of an atom.

Mendeleev died in 1907 at the age of 72, just before the discovery of the proton and Henry Moseley’s work, in 1913, which proposed that the atomic numbers of elements should be equal to the number of positive charges (protons) they contained in their nuclei. This discovery would have pleased Mendeleev, who had already suggested, based on their properties, that some elements shouldn’t be placed in the periodic table strictly in order of atomic weight.

After which, of course, came the discovery of the neutron — which would finally clear up the whole atomic mass/atomic number thing — atomic orbital theory, and the discovery of super-heavy elements. The most recent additions to the modern periodic table were the official names, in 2016, of the final four elements of period 7: nihonium (113), moscovium (115), tennessine (117) and oganesson (118).

Which brings us up to date. For now…


Like the Chronicle Flask’s Facebook page for regular updates, or follow @chronicleflask on Twitter. Content is © Kat Day 2019. You may share or link to anything here, but you must reference this site if you do.

If you enjoy reading my blog, please consider buying me a coffee through Ko-fi using the button below.
Buy Me a Coffee at ko-fi.com

Advertisements

Elements, compounds and misleading mercury

Elemental mercury isn't the same as mercury in compounds.

Elemental mercury isn’t the same as mercury in compounds.

Today I read an interesting article about some recent research carried out at the University of Illinois where they demonstrated that the best way to convince parents to vaccinate their children might be to show them the results of the diseases the vaccines prevent. (This, by the way, contradicts some research published in 2014 which showed that this tactic didn’t work. For an excellent discussion of the two, see here.)

Then, because I am just one of those people who can’t resist poking at ulcers with my tongue (you know what I mean) I had a quick look at some of the comments regarding that article. Reassuringly, most people were weighing in on the “yeah, vaccinate!” side of the argument. But not surprisingly there was also a small group of people posting the traditional anti-vaccine arguments. And then, this appeared:

mercury ppm

This is thoroughly silly, and I’ll tell you why.

Well, it did make be go “hmmmmm”, but for the reason you might imagine.

No, you see, what I thought was: “hmmmmm, someone else who has, possibly deliberately, failed to understood the difference between elements and compounds, and how chemical bonding changes properties.”

Allow me to start at the beginning. If you went to a school in the UK (and I would hope it’s similar elsewhere in the world) you learned about elements, compounds and mixtures when you were about 13 years old – if not before. You might have forgotten it since, but I can absolutely, categorically guarantee you that lesson happened. In fact, it was probably a few lessons.

iron sulfide experiment

The much-loved reaction between iron and sulfur.

One experiment much beloved of chemistry teachers since year dot is to take a mixture of sulfur (a yellow powder) and some iron filings (grey) and show that they can be separated with a magnet. Then heat the mixture up so that the two react, with a rather beautiful red glow, to form iron sulfide. This is a blackish solid which is in theory not magnetic (but in practice almost always is) and demonstrate that now the two elements cannot be separated.

Thus we have demonstrated that elements (the iron and the sulfur) have different properties to the compound they formed (iron sulfide), and also that mixtures can be separated fairly easily, whereas breaking compounds up into their constituent elements is much harder. Lovely. Job done.

And yet… so many people seem to have been asleep that day. Or perhaps just didn’t grasp it well enough to continue to apply the principle to other things.

pouring mercury

Elemental mercury

For example, mercury. Mercury, the element (the runny, silvery stuff that you used to find in thermometers) is a heavy metal. Like most of its compatriots, such as cadmium, lead and arsenic, it’s toxic. It can be absorbed through the skin and mercury vapour can be inhaled, so containers need to be tightly sealed. The increasing awareness of the toxicity of mercury is why older readers might remember seeing it ‘in the flesh’, so to speak, at school, whereas younger ones will not – these days it’s rarely even used in thermometers for fear of breakages.

That said, it does occur naturally in the environment, particularly as the result of volcanic eruptions – and very low levels aren’t considered harmful. The dose, as they say, makes the poison. It also occurs as the result of industrial processes, particularly coal-fired power plants and gold production, and occupational exposure is a genuine concern. In particular, chronic exposure is known to cause cogitative impairment. It might the source of the ‘mad dentist’ myth. It’s almost certainly the origin of the phrase ‘mad as a hatter‘.

So in summary, don’t mess about with elemental mercury; it’s not good for your health.

However, as I took some pains to establish, elements and compounds are different things. So what about compounds which contain mercury?

The compound thiomersal

The compound thiomersal

This is where vaccines come in. There is a substance that used to be used as a preservative in (some) vaccines called thiomersal (or thimerosal, in the U.S). You may have heard its name; it comes up quite a lot. Incidentally, it hasn’t just been used in vaccines, but also in various other things including skin-test antigens and tattoo inks.

Now, to be clear, thiomersal IS potentially toxic, however it’s quickly metabolised in the body to ethyl mercury (C2H5Hg+) and thiosalicylate and, although ethyl mercury does, clearly, still contain atoms of mercury, it does not bioaccumulate. In other words, your body gets rid of it. At very low doses (such as those in vaccines) there is no good evidence that thiomersal is harmful.

Still, due to continuing public health concerns, thiomersal has been phased out of most U.S. and European vaccines. In the UK, thiomersal is no longer used in any of the vaccines routinely given to babies and young children in the NHS childhood immunisation programme. And at the moment, all routinely recommended vaccines for U.S. infants are available only as thimerosal-free formulations or contain only trace amounts of thimerosal (≤1 than micrograms mercury per dose).

Let me just say that again. The evidence suggests it’s safe, but it’s been removed anyway as a precaution. If you live in the UK, it’s not in your child’s vaccines, and that includes the new nasal-spray vaccine for flu which has been rolled out over the last few years. If you live in the U.S. it’s probably not, and thimerosal (thiomersal) free versions exist. It does turn up most often in flu vaccines (hence the meme image at the start) but thiomersal-free versions of those also exist in the U.S.

So chances are it’s not in your vaccines. Not in there. Got it? Ok.

ethyl vs methyl mercury

methyl mercury (left) is not the same as ethyl mercury (right)

Now, you may have heard about mercury in seafood. It is an issue, particularly for women who are pregnant, trying to become pregnant or breastfeeding, and is the reason such women are advised not to eat shark and swordfish, and to keep their tuna consumption low. But here’s the thing: it’s a different kind of mercury. In this case, it’s methyl mercury (remember, thiomersal breaks down to ethyl mercury, which is not the same).

Methyl mercury is more toxic than ethyl mercury. Methyl mercury binds to parts of amino acids much more readily than its ethyl cousin, and it’s able to pass through the blood brain barrier and into nerve cells where it causes damage. In addition, ethyl mercury is much more quickly eliminated from the body than methyl mercury. Because of all this, methyl mercury does bioaccumulate (build up in the body), and that’s why large top-of-the-food-chain fish like shark and tuna can have significant levels of it, and why certain groups of people should be careful about eating them.

The FDA’s action level (the limit at or above which FDA will take legal action) for methyl mercury in fish is 1000 ppb (1 ppm). But remember, that’s for the much more dangerous methyl mercury, not ethyl mercury. I’ve been unable to find an equivalent figure for the UK, but I’d imagine it’s similar.

So, where does the 200 ppb mercury figure in the image at the top come from? Well the Environmental Protection Agency does indeed set a ‘maximum contaminant level goal’ for inorganic mercury of 0.002 mg/L or 2 ppb in water supplies. Methyl and ethyl mercury are not inorganic mercury; compounds that fall into this category include mercuric chloride, mercuric acetate and mercuric sulfide, which largely get into water as the result of industrial contamination.

In summary, that meme image at the start is basically comparing apples and oranges. The EPA limit isn’t relevant to vaccines, because it’s for inorganic mercury, which the substance in vaccines isn’t. While we’re about it, the levels applied to fish don’t apply either, because that’s methyl mercury, not ethyl mercury. They’re not the same thing. And all that aside, it’s highly unlikely (if you live in the UK, no chance at all) that there are 50,000 ppb of ethyl mercury in your flu vaccine anyway. AND, let’s not forget, there’s no evidence that the tiny quantities of thiomersal used in vaccines are harmful in the first place.

Phew.

You may note that I’ve studiously avoided the word ‘autism’ in this post so far. But yes, that’s the big concern; that exposure to thiomersal in vaccines could cause autism. Despite multiple, huge, studies in several countries looking for possible links between vaccines and autism, none have been found. Vaccines don’t cause autism. It’s time we stopped wasting enormous amounts of time and resources on this non-link and spent it instead on finding out what does cause it. Wouldn’t that be far more useful and interesting?

Now… if you’re hardcore anti-vaccine and you’ve read this far, and you’re about to hit the comment button and tell me that all this research is just Big Pharma covering things up so they can make money from the ‘million(/billion/trillion) dollar vaccine industry’, just wait a moment.

Stop.

Think about this: how much money could the medical industry make from people actually catching measles, mumps, polio, TB, whooping cough and all the others? Just think of all the money they could make selling antivirals and antibiotics, all the money to be made from painkillers, antipyretics, drugs to treat respiratory symptoms of one kind or another, and everything else? Believe me, it would be much, much more than they make from a single 2 ml dose of vaccine. Why ‘cover up’ research that’s, if anything, reducing their profits?

All these diseases are horrible, and some can be fatal or have genuinely life-changing consequences. That’s proven. Please vaccinate your children, and yourself.

—-

Follow The Chronicle Flask on Facebook for regular updates.

 

 

 

Why weigh atoms that way?

A couple of days ago I was listening to the latest Radiolab podcast. If you’ve never listened to one of these, you really should. They are beautifully produced and, without fail, utterly fascinating. Over the last year or so I’ve learned about a possible cure for a disease with a 100% mortality rate, an apocryphal Russian story about horses frozen into a block of ice, and a new theory for the end of the dinosaurs where, if I understood it correctly, they were essentially grilled to death. Episodes of Radiolab always feel like a thoroughly good use of brain-time.

Anyway, if you’re still with me and haven’t dashed off to immediately download some of these little gems, the most recent episode is about weights and measures and how we’ve standardised them over the years. In particular the kilogram, which is the last physical standard in use, although possibly not for long (listen to the podcast).

shutterstock_27019597_Alhovik_mod_2

So what are the scales made of…?

This got me thinking about atoms and, in particular, how we decide their mass. This matters you see, because the mass of atoms tells us chemists how much stuff to use. If I want a saline solution with a particular concentration, all I need do is look up the numbers on the periodic table, weigh out the appropriate amount of salt and dilute it with the appropriate amount of water. And if you’re a patient who needs a saline drip, you’d better hope I did it correctly.

Anyway, if you remember your periodic table (which of course you do, but just in case, here’s a picture) all the elements come with two numbers.

The Periodic Table

One of these numbers is the atomic number, which is the number of protons in the nucleus of each atom of the element. Conveniently, nature has managed to produce an atomic nucleus for each number between 1 and, at last count, 118 and if you ‘read’ the periodic table from left to right, top to bottom, you’ll see the numbers go up one at a time.

The other number, relative atomic mass, is a bit less tidy. It still goes up as you go along the periodic table, but in less regular jumps of roughly between one and three.  Without going into lots of detail, relative atomic mass is standardised against 112 the mass of carbon-12. Which begs the question, why? The more mathematically aware will have clocked that 112 of 12 is, well, 1. So why don’t we compare all the elements to hydrogen, which actually has a mass of 1? Or if that’s infeasible for some reason why not, I don’t know, choose 19 of beryllium-9, or 128 of silicon-28?

Well actually, almost exactly 200 years ago now, atomic mass (called atomic weight, at the time) was originally compared to hydrogen, and it was thought that all elements would have masses which were exact multiples of hydrogen’s.

The problem with this was that as measuring techniques became more sophisticated it became clear that some elements were inconveniently failing to follow the rule. In fact, some were downright contrary, like chlorine which appeared to have a mass which wasn’t even a whole number.

This was, at least partially, sorted out in 1932 when James Chadwick proved the existence of neutrons. The existence of isotopes had already been suggested, but this finally cleared up what the pesky things actually were. It turns out some atoms are fatter than others, having one or two more uncharged particles in their nuclei. This doesn’t change what atom they are – they still have the same number of protons – but it does make them a bit heavier. Take a sample of pure chlorine, for example, and you find that roughly three quarters of the atoms in it have a mass of 35, whereas the other quarter have a mass of 37. These are the isotopes of chlorine: imaginatively named chlorine-35 and chlorine-37. Work out the weighted average of the two and you get 35.5, which is the number you see on periodic tables.

In the mid-20th century something of a minor squabble between chemists and physicists broke out (chemists and physicists often squabble: they’re a bit like the English and the French: they like to visit each other but only so that they can moan about how annoying the other lot are and how badly they do everything). By this time had been a switch from using hydrogen (the lightest element) to oxygen as the standard to which other elemental masses were compared. This was mainly for the convenience of chemical analysis: oxygen combines with a lot of things to make straightforward oxides, whereas hydrides are less common and trickier to work with. Plus, large quantities of hydrogen gas are a bit (in the sense of an elephant being a bit heavy, or cyanide being a bit poisonous) of an explosion risk. Oxygen causes other things to burn jolly nicely, but isn’t actually flammable itself. If you can manage to keep it away from other flammable stuff it’s a far safer option.

The problem was that chemists were using a mass scale based on assigning the number 16 to a natural mixture of oxygen (which contains mostly oxygen-16, with little bits of oxygen-17 and oxygen-18). Physicists, on the other hand, had instead assigned the number 16 to the isotope oxygen-16, which they had isolated using the technique of mass spectrometry.

Josef Mattauch

Physicist Josef Mattauch

You may think the physicists’ method sounds more logical, but the chemists’ reasoning was that in naturally-occurring compounds there would be a mixture of isotopes, so it made sense to use a number based on that mixture since you never actually encounter one atom on its own. Either way, the result was differences in the numbers, admittedly some way down the decimal places, but none the less a difference. Of course it was possible to convert between the two, but at the time scientists were fiddling with such tricksy things as nuclear energy and, of course, bombs. Even a tiny discrepancy in the nth decimal place was potentially catastrophic. Something had to be done.

Edward_Wichers

Chemist Edward Wichers

In 1961 a compromise was agreed, thanks largely to the combined efforts of the physicist Josef Mattauch and the chemist Edward Wichers, who set about persuading their respective groups to be reasonable and play nicely with each other.

The result was that carbon-12 was assigned a mass of exactly 12 and the relative atomic mass scale became based on that. The choice of carbon was, to an extent, somewhat arbitrary. It suited the physicists, who were already using carbon as a standard for mass spectrometry. It fell in between the two previous values (1 for hydrogen and 16 for oxygen), which meant it wouldn’t throw every existing piece of work out by too much. In particular, chemists weren’t keen on switching to the physicists’ method of 116 of the oxygen-16 isotope, because it would change their numbers quite significantly. Switching to 112 of carbon-12 meant, surprisingly, a smaller change. Carbon is also, of course, a naturally abundant element and it was easy to get samples of pure carbon.

And that, as they say, is that. The carbon-12 scale is still used today, over 50 years later, and it’s not going anywhere. Hydrogen is officially 112 the mass of carbon-12, and we use carbon-12 because, basically, it was the only option the chemists and physicists would agree on. Hey, it’s as good a reason as any.