Remarkable, reticent ruthenium

Ruthenium is rare transition metal belonging to the platinum group of elements

What shall I write about this week, I wonder… how about, apropos of nothing, the element ruthenium? It is the International Year of the Periodic Table after all; there have to be some element-themed posts, right?

Ruthenium has the atomic number 44 (good number, that) and the symbol Ru. It was officially discovered by Karl Ernst Klaus in 1844 (there it is again) at Kazan State University in Russia.

You might remember from school (or possibly from your jewellery) that platinum is really unreactive. What has this got to do with ruthenium? Well, unreactive metals can be found in nature as actual metal, rather than combined with other elements in ores. But it turns out that early “platinum metal” — used by pre-Columbian Americans — wasn’t pure, but was in fact an alloy of platinum with other metals.

Gottfried Osann discovered ruthenium before Klaus, but gave up his claim.

In 1827 Jöns Berzelius and Gottfried Osann dissolved crude platinum from the Ural Mountains in aqua regia: a 1:3 mixture of nitric acid and hydrochloric acid (we’ve met aqua regia before, in a famous story about Nobel Prize medals). Osann was certain that he’d isolated three new metals, which he named pluranium, ruthenium, and polinium, but Berzelius disagreed, and this caused a long-running dispute between the two scientists.

Osann eventually gave up the argument — which was a shame, because he was right. In 1844 Karl Ernst Klaus analysed the compounds prepared by Osann and showed that they did, in fact, contain ruthenium.

Klaus had been studying the insoluble residues left over after platinum extraction from Ural placer deposits. Like many chemists at the time, he tasted and smelled the substances he prepared, and he reported that the ammines of ruthenium had a more caustic taste than alkalis, while the taste of osmium tetroxide was “acute pepper-like” (do not try this at home).

He communicated his discoveries to the Academy of Sciences at St. Petersburg and to Academician G. I. Gess, who reported them on September 13th and October 25th, 1844. Klaus named the new element from the Latin word, Ruthenia, and mentioned Osann’s work, saying:

“I named the new body, in honour of my Motherland, ruthenium. I had every right to call it by this name because Mr. Osann relinquished his ruthenium and the word does not yet exist in chemistry”

ruthenium chloride is sometimes shown as red, but it’s actually black

Klaus died of pneumonia in 1864, and the study of ruthenium in Russia more or less stopped for the best part of seventy years, not restarting until the 1930s. The element is now known to harden platinum and palladium alloys, and is used in electrical contacts as a result. When just 0.1% is added to titanium it forms an extremely corrosion-resistant alloy which is particularly useful in seawater environments.

Ruthenium and its compounds have lots of other uses, too, including cancer treatments and in catalysis. Ruthenium(VIII) oxide, a colourless liquid (just: its melting point is 25 oC) forms brown-black ruthenium dioxide in contact with fatty oils; because of this property it’s used in forensics to expose latent fingerprints.

This Swarovski necklace has been plated with ruthenium

One of the most vibrant ruthenium compounds is the dye, “ruthenium red”, which has been used as a biological stain for over 100 years. It has the complicated formula [Ru3O2(NH3)14]Cl6 and is made by reacting ruthenium trichloride with ammonia in air, which might explain why pictures of ruthenium trichloride sometimes show a red substance, when it’s actually a rather boring black.

One place where you might have come across ruthenium in everyday life is jewellery: the metal’s hardness, high corrosion resistance and unusual, not-quite-metallic grey-black finish make it popular choice. Pure ruthenium is expensive though, so it’s almost always plated onto a cheaper base metal.

And now, one last picture to mark my ruthenium-day: check out my fabulous chemistry-themed birthday cake (thanks, Mum!), made by the Cotswold Cake Room. How amazing is this?

Normally at the end of my blog posts I link to my ko-fi account, but this time, instead, if you’re feeling generous please consider donating to my birthday fundraiser to raise money for Alzheimer’s Research UK.

The fundraiser is running through Facebook, which I appreciate doesn’t suit everyone — if you’d like to donate without going via that particular social network, there’s a link to donate directly here. Do drop me a comment below if you do, so that I can say thank you x


Like the Chronicle Flask’s Facebook page for regular updates, or follow @chronicleflask on Twitter. Content is © Kat Day 2019. You may share or link to anything here, but you must reference this site if you do.

Advertisements

Gold! Bright and yellow, hard and cold

200px-Gold-49956Let’s talk about element number 79.  It’s one of the oldest known elements, used for quite literally thousands of years.  It’s constantly at the heart of conflicts and politics.  Poets have waxed lyrical about it, authors have written about it, economists and prospectors have hinged their livelihoods on it.  And, of course, chemists have studied it.

As an element it’s unusual.  It’s a metal, but instead of the boring silvery-grey of most metals it glows a warm yellow.  It’s also one of the most unreactive elements, and yet has found use a catalyst – speeding up chemical reactions that otherwise would be too slow to be useful.  It’s rare, making up only about 0.004 parts per million of the Earth’s crust, and yet its annual production is surprisingly high: 2700 tonnes in 2012.  Its density makes it heavy – weighing over nineteen times more than the same volume of water – but it’s also relatively soft, so soft that it’s possible to scratch a pure piece with your fingernail (in theory, and if you have fairly robust fingernails).

Yes, gold.  Chemical symbol Au, from its latin name aurum meaning ‘shining dawn’ or ‘glow of sunrise’ (how lovely is that?)

The history of gold is fascinating.  You could easily write a whole book about it.  In fact, someone has.  I won’t attempt anything so ambitious, but it does have some very interesting chemical stories associated with it.

Because of its unreactivity, gold is one of the relatively few elements that’s found uncombined in nature.  In other words, you can pick up a piece of pure gold from the ground or, more likely, out of a river bed.  Thanks to this property it’s very probably the first metal that humans as a species interacted with.  It’s too soft to be much use as a tool, so its earliest uses were almost certainly ornamental.  Decorations and jewellery had value and could be traded for other things, and ultimately (skipping over a chunk of history and early economics) this led to currency.

And so it was that early alchemists, some two thousand years ago, became obsessed with the idea of a quick buck.  Could other metals be turned into gold?  They searched long and hard for the mythical philosopher’s stone (like in Harry Potter, only not exactly) which could turn base metals into gold or silver.  Of course they never found it, because it doesn’t exist.  It’s not possible to change one element into another during a chemical reaction.  This is because what defines an element is the number of protons in its nucleus, and chemistry is all about the electrons. Chemical processes don’t touch protons, which are hidden away in the nuclei of atoms.

But where there’s a will there’s almost always a way.  Two millennia after alchemists were hunting for a magical stone, the chemist Glenn Seaborg managed to transmute a minute quantity of lead, via bismuth, into gold by bombarding it with high-energy particles.  Apparently, these days particle accelerators ‘routinely’ transmute elements, albeit only a few atoms at a time.

The trouble is, this method costs a fortune – way, way more than the value of any gold produced.  Gold, after all, is ‘only’ worth about a thousand pounds for a troy ounce (31 grams).  Particle accelerators cost billions of pounds to build, and yet more in running costs.  If you really want gold so desperately, these days there may be more mileage in harvesting it from defunct bits of electronic equipment.

Or just ask people to send you their old jewellery through the post in exchange for cash.  Even Tesco have got into that game now.  Through the post!  Honestly, people fear putting a tenner in a birthday card but gold jewellery in a paper bag?  No problem.

But anyway, back to gold’s reactivity, or rather lack of it.  Gold isn’t the most unreactive element (depending on how you’re defining reactivity, that honour probably goes to iridium) but it’s up there.  Or perhaps I should say down there.  It keeps its shiny good looks even when it’s regularly in contact with warm, damp, salty, slightly acidic skin, which is quite handy from the jewellery and money point of view.

But there is one thing gold reacts with: aqua regia.  Aqua regia is a mixture of nitric and hydrochloric acid and ancient alchemists gave it its name – which literally means ‘royal water’ – because it dissolves the ‘royal’ metal, gold.  It’s pretty cool stuff, in a slightly scary way.  Freshly-prepared it’s colourless, but quickly turns into a fuming, reddish solution.  It doesn’t keep – the hydrochloric and nitric acids effectively attack each other in a series of chemical reactions which ultimately result in the production of nitrogen dioxide, accounting for the orange colour and nasty fumes. Screen Shot 2013-06-04 at 00.20.27The fire diamond (remember those?) for aqua regia has a 3 in the blue box, putting it on a nastiness par with pure chlorine, ammonia and, funnily enough, oxalic acid (the stuff in rhubarb).  It also has ‘ox’ in the white box, telling us it’s a powerful oxidising agent, which means it’s effectively an electron thief.

All atoms contain electrons but they can, and frequently do, lose or gain them during the course of chemical reactions.  Acids in general are often quite good at pinching electrons from metals, but aqua regia is particularly good at it, and especially with gold.  Much, much better than either nitric acid or hydrochloric acid on their own because, in fact, the two work together, as a sort of two-man gang of acid muggers.  When metal atoms lose electrons they become ions, and ions dissolve very nicely in water.  Hence, aqua regia’s fantastic property of being able to dissolve gold.

Which leads me to a really great story.  During World War II it was illegal to take gold out of Germany, but two Nobel laureates – Max von Laue, who strongly opposed the National Socialists, and James Franck, who was Jewish – discretely sent their 23-karat, solid gold Nobel prize medals to Niels Bohr’s Institute of Theoretical Physics in Copenhagen for protection.  All well and good, until the Nazis invaded Denmark in 1940.  Now, unfortunately, the evidence of von Laue and Franck’s crime was sitting on a shelf in a lab, just waiting to be found.  This was serious: if the Gestapo found the gold medals they would persecute von Laue and Franck, and probably take the opportunity to make things very unpleasant for Bohr as well, particularly since his institute had protected and supported Jewish scientists for years.

Nobel_PrizeWhat to do?  At the time a Hungarian chemist called George de Hevesy was working at the institute, and it was he that had the bright idea of dissolving the medals in aqua regia.

It would have taken ages, because although aqua regia dissolves gold, it doesn’t do it quickly, and these were chunky objects.  He must have been anxiously looking over his shoulder the whole time.  But he managed it, and eventually ended up with a flask of orange liquid that he stashed on a high shelf.  The Nazis searched the building but didn’t realise what the flask was, so they left it.  Iit stayed there undisturbed for years, in fact until after the war was over.  At which time, de Hevesy precipitated the gold back out and sent the metal back to the Swedish Academy, who recast the prizes  and re-presented them to Franck and von Laue.

So there we have it, you can’t turn lead into gold (at least, not without a particle accelerator) but, if you know what you’re doing, you might just be able to turn a flask of orange liquid into two solid gold Nobel prize medals!

———–

The title of this post comes from a poem by the British poet, Thomas Hood, 1799-1845. Here it is in full:

Gold!
Gold! Gold! Gold! Gold!
Bright and yellow, hard and cold
Molten, graven, hammered and rolled,
Heavy to get and light to hold,
Hoarded, bartered, bought and sold,
Stolen, borrowed, squandered, doled,
Spurned by young, but hung by old
To the verge of a church yard mold;
Price of many a crime untold.
Gold! Gold! Gold! Gold!
Good or bad a thousand fold!
How widely it agencies vary,
To save – to ruin – to curse – to bless –
As even its minted coins express :
Now stamped with the image of Queen Bess,
And now of a bloody Mary.