Alkaline water: if you like it, why not make your own?

Me* reading the comments section on the Amazing Alkaline Lemons post (*not actually me)

Alkaline water seems to be a trend at the moment. Not quite so much in the UK, yet, but more so in the US where it appears you can buy nicely-packaged bottles with the numbers like 8 and 9.5 printed in large, blue letters on their sides.

It’s rather inexplicable, because drinking slightly alkaline water does literally NOTHING for your health. You have a stomach full of approximately 1 M hydrochloric acid (and some other stuff) which has an acidic pH of somewhere between 1.5 and 3.5. This is entirely natural and normal – it’s there to kill any bugs that might be present in your food.

Chugging expensive water with an alkaline pH of around 9 will neutralise a bit of that stomach acid (bringing the pH closer to a neutral value of 7), and that’s all it will do. A stronger effect could be achieved with an antacid tablet (why isn’t it antiacid? I’ve never understood that) costing around 5p. Either way, the effect is temporary: your stomach wall contains special cells which secrete hydrochloric acid. All you’re doing by drinking or eating alkaline substances is keeping them busy.

(By the way, I’m not recommending popping antacids like sweeties – it could make you ill with something called milk-alkali syndrome, which can lead to kidney failure.)

Recently, a video did the rounds of a woman testing various bottled waters, declaring the ones with slightly acidic pHs to be “trash” and expressing surprise that several brands, including Evian, were pH neutral. The horror. (For anyone unsure, we EXPECT water to have a neutral pH.)

Such tests are ridiculous for lots of reasons, not least because she had tiny amounts of water in little iddy-biddy cups. Who knows how long they’d been sitting around, but if it was any length of time they could well have absorbed some atmospheric carbon dioxide. Carbon dioxide is very soluble, and it forms carbonic acid when it dissolves in water which, yes, would lower the pH.

Anyway, there’s absolutely nothing harmful about drinking water containing traces of acid. It doesn’t mean the water is bad. In fact, if you use an ion exchange filter (as found in, say, Brita filter jugs) it actually replaces calcium ions in the water with hydrogen ions. For any non-chemists reading this: calcium ions are the little sods that cause your kettle to become covered in white scale (I’m simplifying a bit). Hydrogen ions make things acidic. In short, less calcium ions means less descaling, but the slight increase in hydrogen ions means a lower pH.

So, filtered water from such jugs tends to be slightly acidic. Brita don’t advertise this fact heavily, funnily enough, but it’s true. As it happens, I own such a filter, because I live in an area where the water is so hard you can practically use it to write on blackboards. After I bought my third kettle, second coffee machine and bazillionth bottle of descaler, I decided it would be cheaper to use filtered water.

I also have universal indicator strips, because the internet is awesome (when I was a kid you couldn’t, easily, get this stuff without buying a full chemistry set or, ahem, knowing someone who knew someone – now three clicks and it’s yours in under 48 hours).

The pH of water that’s been through a (modern) ion-exchange filter tends to be slightly acidic.

The water in the glass was filtered using my Brita water filter and tested immediately. You can see it has a pH of about 5. The water straight from the tap, for reference, has a pH of about 7 (see the image below, left-hand glass).

The woman in the YouTube video would be throwing her Brita in the trash right now and jumping up and down on it.

So, alkaline water is pretty pointless from a health point of view (and don’t even start on the whole alkaline diet thing) but, what if you LIKE it?

Stranger things have happened. People acquire tastes for things. I’m happy to accept that some people might actually like the taste of water with a slightly alkaline pH. And if that’s you, do you need to spend many pounds/dollars/insert-currency-of-choice-here on expensive bottled water with an alkaline pH?

Even more outlandishly, is it worth spending £1799.00 on an “AlkaViva Vesta H2 Water Ionizer” to produce water with a pH of 9.5? (This gizmo also claims to somehow put “molecular hydrogen” into your water, and I suppose it might, but only very temporarily: unlike carbon dioxide, hydrogen is very insoluble. Also, I’m a bit worried that machine might explode.)

Fear not, I am here to save your pennies! You do not need to buy special bottled water, and you DEFINITELY don’t need a machine costing £1.8k (I mean, really?) No, all you need is a tub of….

… baking soda!

Yep, good old sodium bicarbonate, also known as sodium hydrogencarbonate, bicarb, or NaHCO3. You can buy a 200 g tub for a pound or so, and that will make you litres and litres and litres of alkaline water. Best of all, it’s MADE for baking, so you know it’s food grade and therefore safe to eat (within reason, don’t eat the entire tub in one go).

All you need to do is add about a quarter of a teaspoon of aforementioned baking soda to a large glass of water and stir. It dissolves fairly easily. And that’s it – alkaline water for pennies!

Me* unconvinced by the flavour of alkaline water (*actually me).

Fair warning, if you drink a lot of this it might give you a bit of gas: once the bicarb hits your stomach acid it will react to form carbon dioxide – but it’s unlikely to be worse than drinking a fizzy drink. It also contains sodium, so if you’ve been told to watch your sodium intake, don’t do this.

If I had fewer scruples I’d set up shop selling “dehydrated alkaline water, just add water”.

Sigh. I’ll never be rich.


Like the Chronicle Flask’s Facebook page for regular updates, or follow @chronicleflask on Twitter. All content is © Kat Day 2017. You may share or link to anything here, including the images, but you must reference this site if you do.


All comments are moderated. Abusive comments will be deleted, as will any comments referring to posts on this site which have had comments disabled.

Words of woo: what does ‘alkalise’ mean?

220px-Marketvegetables

‘alkaline’ diets usually revolve around eating lots of fruit and vegetables – no bad thing, but it won’t change your body’s pH

If you hang around in the unscientific chunks of the internet for any length of time, as I find myself doing from time to time, you start to come across certain words that get used over and over. They are usually words that sound very sciency, and they’re being used to make things sound legitimate when, if we’re honest, they’re really not.

One such word is ‘alkalise’ (or ‘alkalize’). I’ve met it often ever since I wrote my post ‘Amazing alkaline lemons?‘. So, what does this word mean?

Good question. Google it, and at least the first three pages of links are about diets and how to ‘alkalise your body’ featuring such pithy lines as:

“It’s not really a diet… it’s a way of eating” (is there a difference?)
“Alkalise or live a life of misery” (gosh)
“Alkalise or die” (blimey)
“Alkaline water” (apparently this is a thing)
“Why it’s important to alkalise your water” (using our overpriced products)

In fact, I had to click through several pages of Google links before I even got to something that was simply a definition. (I’m aware that Google personalises its search results, so if you try this yourself you might have a different experience.) Certainly, there are no legitimate chemistry, biochemistry – or anything else like that – articles in sight.

Hunt specifically for a definition and you get turn basic and less acidic; “the solution alkalized”‘ (The Free Dictionary), to make or become alkaline. (Dictionary.com) and, simply, ‘to make alkaline’ (Collins).

Universal_indicator_paper

pH 7 is neutral, more than 7 is basic

The first of these is interesting, because it refers to ‘basic’. Now, as I’ve explained in another post, bases and alkalis are not quite the same thing. In chemistry a base is, in simple terms, anything that can neutralise an acid. Alkalis, on the other hand, are a small subset of this group of compounds: specifically the soluble, basic, ionic salts of alkali metals or alkaline earth metals.

Since there are only six alkali metals (only five that are stable) and only six alkaline earth metals (the last of which is radium – probably best you steer clear of radium compounds) there are a rather limited number of alkalis, namely: lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, caesium hydroxide, beryllium hydroxide, magnesium hydroxide, calcium hydroxide, strontium hydroxide, barium hydroxide and radium hydroxide. There you go. That’s it. That’s all of them. (Okay, yes, under the ‘soluble in water’ definition we could also include ammonium hydroxide, formed by dissolving the base, ammonia, in water – that opens up a few more.)

This, you see, is why real chemists tend not to use the term ‘alkalise’ very often. Because, unless the thing you’re starting with does actually form one of these hydroxides (there are some examples, mostly involving construction materials), it’s a little bit lead-into-gold-y, and chemists hate that. The whole not changing one element into another thing (barring nuclear reactions, obviously) is quite fundamental to chemistry. That’s why your chemistry teacher spent hours forcing you to balance equations at school.

No, the relevant chemistry word is ‘basify‘. This is such a little-known word that even my spell checker complains, but it’s just the opposite of the slightly better-known ‘acidify’ – in other words, basify means to raise the pH of something by adding something basic to it. Google ‘basify’ and you get a very different result to that from ‘alkalise’. The first several links are dictionary definitions and grammar references, and after that it quickly gets into proper chemistry (although I did spot one that said ‘how to basify your urine’ – sigh).

What does all this mean? Well, if you see someone using the word “alkalising” it should raise red flags. I’d suggest that unless they’re about to go on to discuss cement (calcium hydroxide is an important ingredient in construction materials) cocoa production or, possibly, certain paint pigments, then you can probably write off the next few things they say as total nonsense. If they’re not discussing one of the above topics, the chances are good that what they actually know about chemistry could safely fit on the back of a postage stamp, with space to spare, so nod, smile and make your escape.

For the record, you absolutely don’t need to alkalise your diet. Or your urine*. Really. You don’t.

And please don’t waste your money on alkaline water.

—-

Follow The Chronicle Flask on Facebook for regular updates and other interesting chemistry and science bits and pieces.

Lemon

There’s no good evidence that drinking lemon juice has a significant impact on urine pH.

* In the event that you actually have problematically acidic urine, perhaps due to some medical condition, there are proven treatments that will neutralise it (i.e. take it to around pH 7, which is the pH urine ought to be, roughly). In particular, sodium citrate powder can be dissolved in water to form a drinkable solution. Of course, if this is due to an infection you should see a doctor: you might need antibiotics – urinary tract infections can turn nasty. Yes, I am aware that the salt of the (citric) acid in lemons is sodium citrate, however there is no good evidence that drinking lemon juice actually raises urine pH by a significant amount. And yes, I’m also aware that dietary intake of citrate is known to inhibit the formation of calcium oxalate and calcium phosphate kidney stones, but that’s a whole other thing. If you have kidney stones there are a number of dietary considerations to make, not least of which might be to cut down on your consumption of certain fruits and vegetables such as strawberries and spinach (and ironically, if you look at some of the – entirely unscientific – lists of acid-forming and alkali-forming foods these are almost always on the alkaline side).

Link

It's pure something all right...

It’s pure something all right…

Recently a friend sent me a link to this page about the ‘Hexagon H2O‘ water purification system. He knew I’d love it, and I did. Not, however, for the reasons the company supplying it would presumably hope. The ‘science’ is so ludicrous, it’s hard to believe anyone would even begin to take it seriously. Sadly, this product (which, spoiler alert, is a massive scam) seems to have made quite a bit of money by scattering vaguely sciencey-sounding terms around like confetti and sucking in anyone whose chemistry and physics knowledge is, shall we say, less than detailed.

That said, it is easy to forget about water when we talk about chemistry, since we’re usually more interested in what’s in the water than the water itself. It’s actually pretty important, especially when it comes to pH. So in the spirit of finding some good good in the bad, let’s use some of their claims to have a look at the chemistry.

We begin with the very first sentence on the very first page: “With the Hexagon Alkaline Hydrogen Water Filtration System, you can transform normal tap water into hydrogen-rich alkaline water.

First of all, what is water? Water is H2O (they did get that mostly right, apart from the times they write it as H2O). What does this familiar formula mean? It means that in pure water there are two hydrogen atoms for every one oxygen atom. These atoms are strongly bonded together, and generally like to stay that way. That said, a very small number of those bonds do break at room temperature, like this:

H2O → H+ + OH

On the right of the arrow we have hydrogen ions (H+, actually, technically, H3O+) and hydroxide ions (OH).  At room temperature, there are very roughly 600000000 water molecules for every hydrogen ion in pure water. In other words, hardly any hydrogen (and hydroxide) ions at all. This is because every time a water molecule breaks up into hydrogen ions and hydroxide ions, they just as quickly recombine to form water again.

Now this is for pure water, and pure water has a pH of 7. The reason it has a pH of 7 is because it has this ratio of hydrogen (and hydroxide) ions to water molecules. A solution with a different pH will have a different ratio. If it’s acidic, it has more hydrogen ions. If it’s alkaline, fewer. Assuming room temperature (I keep saying this because pH goes down ever so slightly at higher temperatures, although this does not exactly mean the water becomes more acidic) if the pH is not 7, the water is not pure.

By pure, I mean containing H2O only, and nothing else. It’s very difficult to get a completely pure sample of H2O, because in a single gram of water there are about 30000000000000000000000 molecules. If we’re talking about pure in the, er, purest sense, that means there can’t be even one other molecule or ion in there, and that’s highly unlikely. Not least because gases in the air dissolve in water. Still, you see my point. Pure water has a pH of 7 (at room temperature), and is neither acidic nor alkaline. End of story.

So, back to “hydrogen-rich, alkaline water”. ‘Hydrogen-rich’ could either mean it contains dissolved H2 gas (which is highly unlikely, since it’s pretty insoluble) or that it contains lots of H+ ions. Which would make the water acidic. Which would mean it can’t also be alkaline.

At the risk of stating the obvious, there is no way this statement can be correct.

It gets worse from there. The site helpfully ‘explains’ some terms, and the first of these is ‘alkaline’. Apparently, this is “how water should be”. Well, no. See above. Indeed, if the water were significantly alkaline it would be a bit of a problem. It would taste bitter (yuck), probably cause stomach trouble over time and might even irritate your skin. In fact, this is quite likely, since later on they claim their water has a pH between 8 and 10. 10 is really quite high; hand soap and indigestion remedies have a pHs of about 10.

The first page also says: “The body has natural alkaline buffers against excessive acidity so it can maintain blood pH at the optimum level. However, over-acidity can often occur after a prolonged period of bad eating and stress.Now, I’ve been over this at length. Nothing you eat or drink can change your blood’s pH, which is tightly controlled at about 7.4. There is also no such thing as an ‘alkaline buffer’ (see my recent post on buffers). A very unhealthy diet will certainly have a negative impact on your health over time, for example it might have an effect on bone density. However drinking an alkaline solution is really not the way to combat that. Sadly, the answer is the usual boring stuff about eating more vegetables and perhaps cutting back a bit on meat and dairy. If you just drink an alkaline solution, your stomach acid will simply neutralise it.

We go on, “[by drinking Hexagon water] you are simply helping your natural alkaline buffers to restore pH balance and to reduce health-robbing acid in your body“. Hm. Acid is actually quite important in the body. Your stomach contains hydrochloric acid, which you need to digest food and to protect you from nasty bugs. So describing acid as health-robbing is quite misleading (although I am going to link to this article again, which is worth a read if you’re genuinely interested in actual science).

And then we get to: “Water from the Hexagon has smaller molecular clusters than normal water. This means that it can permeate the body’s cell membranes more rapidly and more efficiently to provide nutrients.”  Water molecules do form clusters, but they’re really not well understood. In fact, they’re an important area of research right now (although if you look them up you need to be careful to distinguish between genuine researchers and genuine quacks, of which there are many). How this company can claim they know anything at all about the size of the water clusters in the water their product produces is beyond me. Also, water clusters aren’t stable – the hydrogen bonds holding them together constantly break and reform, so there’s no way it can make any difference to how easily water permeates cell membranes.

It gets worse from there, with talk of “positive energy” and, my favourite, “Infus[ing] energy into water through natural spiralling movement”.

The whole thing is pure (at least something is pure) nonsense. Even Wikipedia says so. I suppose there will always be people willing to hand over their hard-earned cash for such things, but if you’ve got this far at least you won’t be one of them. Pass it on.