Post 150: Choice Chronicles of the Chronicle Flask

From citric to hydrofluoric, acids are an ever-popular topic

I began this blog in 2013, and since then I’ve written at least one post a month. This will be the 150th.

I put love and care into all my posts and, in turn, this blog has been good to me. Although no one’s ever paid me to write it, it has brought me work over the years – many people have asked me to write for them having read things here. But life is busier now than it’s ever been, and it’s time to wind things down. You’ll continue to find my non-fiction here and there, I’ll still be regularly updating my fiction blog, and if you want the latest info, look me up on Twitter. In particular, check out the #272sci hashtag for tiny bits of bite-sized science.

In the meantime, how about a little reminder of some of this blog’s most popular, most important, or just my favourite, posts? Let’s go!

The acid that really does eat through everything (2013)
Turns out, everyone loves acid – this post is one of my all-time most viewed. I guess there’s just something compelling about substances that can dissolve metal, and this one is particular special (and terrifying) for its ability to also dissolve glass and ceramic. (Oh, and sorry about the double spaces after the full stops. It was a long time ago. I know better now.)

Butyric acid, a very smelly molecule (2014)
On the subject of acids, this has been another popular post. I suppose if there’s anything more fun than an acid that eats through the bottle you’re trying to store it in, it’s an acid that smells of Parmesan and vomit. Seriously, it is an interesting one: we’re all familiar with the smell of ethanoic acid (aka acetic acid, found in vinegar), and propanoic acid (propionic acid) merely smells a bit sweaty, but add one more carbon and, hoo boy, you have an utterly revolting stench that some people are so sensitive to they can still detect it weeks, even months, after cleaning.

It’s important to understand what sugar actually is if you want to reduce your intake

Sugar that’s not sugar? (2015)
People talk a lot of nonsense about sugar. A particular pet hate of mine is people calling products sugar-free when they’re nothing of the sort, or implying that the type of sugary ingredient they’ve put in the thing they’re trying to sell you is somehow extra-healthy. If actually reducing your sugar intake is your goal (and it’s not a terrible one), this piece might help.

MMS and CD chemistry – the facts (2016)
This is my simple explainer about MMS (‘miracle’ or ‘master’ mineral solution) and CD (chlorine dioxide). This horrible, nasty fad seems to have faded away in recent years – partly thanks to the fact that even its founder, Jim Humble, admitted it cures nothing – but then again, I have seen CD-MMS linked to pseudoscientific Covid ‘cures’. Let’s hope this post continues to do its job as a useful reference for anyone that needs it.

Absurd alkaline ideas – history, horror and jail time (2017)
Continuing the theme of health, I’ve written several posts about so-called ‘alkaline’ diets, and this isn’t the most popular (that would be Amazing Alkaline Lemons?) but this is the one I wish more people would read. It explains where the whole silly notion came from in the first place. (As does this Twitter thread, slightly more succinctly.)

There really is no need to panic about slime

No need for slime panic: it’s not going to poison anyone (2018)
I’ve yet to meet a child who doesn’t love slime, and every now and then the gooey stuff becomes so popular that we start to see scare stories. So it was in 2018. However, with a few sensible precautions, slime really isn’t dangerous. It’s all explained here.

Let’s speed up the rate at which we recognise our female chemists (2019)
This one was all about the little-known Elizabeth Fulhame. She was the first chemist to describe catalytic reactions – in 1794, when the more famous Berzelius was a mere teenager. Let’s remember her name.

Chemical connections: dexamethasone, hydroxychloroquine and rheumatoid arthritis (2020)
Covid hit us in 2020, and it would prompt more than one post – including this one when dexamethasone had its moment in the spotlight. Probably an unfamiliar drug to most people before this point, dexamethasone was one of the first practical treatments for rheumatoid arthritis in the mid-20th century. Unlike some other much-hyped treatments, we have solid evidence for the effectiveness of this medicine – although it is really only useful for people suffering with very severe symptoms. Still, it’s pretty cool that an old drug turned out to be such a useful tool in a modern pandemic.

There’s chemistry in your skin

Sunshine, skin chemistry, and vitamin D (2020)
To make it a nice, round ten, I’ll sneak in another 2020 post. This one is all about vitamin D. A lot of people are very critical of supplements, and while I understand their position, this particular case is slightly different. If you live in certain parts of the world, you really, really should be considering vitamin D supplementation for at least part of the year, and this post will tell you why.

Brilliant Bee Chemistry! (2021)
This one wasn’t so long ago, but I love it. Bees are fascinating creatures, and if you don’t know what the connection between bees and bananas is, you ought to have a read.


So, this is it, folks – thank you, it’s been fun! Happy New Year!

Content is © Kat Day 2022. You may share or link to anything here, but you must reference this site if you do. You can still support my writing my buying a super-handy Pocket Chemist from Genius Lab Gear using the code FLASK15 at checkout (you’ll get a discount, too!) or by buying me a coffee – just hit this button:
Buy Me a Coffee at ko-fi.com

 

 

Just what is blk water, and should you drink it?

Christmas is almost here! Are you ready yet? Are you fed up with people asking if you’re ready yet? Have you worked out what to buy for Great-uncle Nigel, who says he neither needs nor wants anything? Always a tricky scenario, that. Consumables are often a safe fallback position. They don’t clutter up the house, and who doesn’t enjoy a nice box of luxury biscuits, or chocolates, or a bottle of champagne, or spirts, or a case of blk water.

Wait, what?

Yes, this mysterious product turned up in my feed a few weeks ago. It’s water (well, so they say), but it’s black. Actually black. Not just black because the bottle’s black, black because the liquid inside it is… black.

It’s black water.

A bit like… cola. Only blacker, and not fizzy, or sweet, or with any discernable flavour other than water.

It raises many questions, doesn’t it? Let’s start with why. Obviously it’s a great marketing gimmick. It definitely looks different. It also comes with a number of interesting claims. The suppliers claim it contains “no nasties” and “only 2 ingredients”, namely spring water and “Fulvic Minerals” (sic). (Hang on, I hear you say, if it’s minerals, plural, surely that’s already more than two ingredients? Oh, but that’s only the start. Stay with me.)

It claims to “balance pH levels” and help “to regulate our highly acidic diets”. Yes, well, I think I’ve covered that before. Absolutely nothing you drink, or eat, does anything to the pH in any part of your body except, possibly, your urine – where you might see a small difference under some circumstances (but even if you do it doesn’t tell you anything significant about the impact of your diet on your long-term health). And bear in mind that a few minutes after you drink any kind of alkaline water it mixes with stomach acid which has a pH of around 2. Honestly, none of that alkaline “goodness” makes it past your pyloric sphincter.

Finally, blk water apparently “replenishes electrolytes”. Hm. Electrolytes are important in the body. They’re ionic species, which means they can conduct electricity. Your muscles and neurons rely on electrical activity, so they are quite important. Like, life or death important. But because of that our bodies are quite good at regulating them, most of the time. If you run marathons in deserts, or get struck down with a nasty case of food poisoning, or have some kind of serious health condition (you’d know about it) you might need to think about electrolytes, but otherwise most of us get what we need from the food and drink we consume normally every day.

Besides which, didn’t they say “only 2 ingredients”? The most common electrolytes in the body are sodium, potassium, magnesium, chloride, hydrogen phosphate and hydrogen carbonate. Most spring waters do contain some, if not all, of these, in greater or smaller amounts, but it’s not going to be enough to effectively “replenish” any of them. If, say, you are running marathons in the desert, the advice is actually to keep a careful eye on your water intake because drinking too much water can dangerously lower your sodium levels. Yes, there are sports drinks that are specifically designed to help with this, but they taste of salt and sugar and/or flavourings which have been added in a desperate attempt to cover up the salty taste. This is apparently not the case with blk water which, to repeat myself, contains “only 2 ingredients”.

And, according to the blk website the drink contains “0 mg of sodium per 500ml” so… yeah.

Speaking of ingredients, what about those so-called fulvic minerals? Maybe they’re the source of those all-important electrolytes (but not sodium)? And maybe they’re magically tasteless, too?

And perhaps, like other magical objects and substances, they don’t actually exist – as geologist @geolizzy told me on Twitter when I asked.

It’s not looking good for blk water (£47.99 for a case of 24 bottles) at this point. But hang on. Perhaps when they said fulvic minerals, what they meant was fulvic acid – which is a thing, or possibly several things – in a the presence of oh, say, some bicarbonate (*cough* 2 ingredients *cough*).

That could push the pH up to the stated 8-9, and didn’t we learn in school that:
acid + alkali –> salt + water
and maybe, if we’re being generous, we could call the salts of fulvic acids minerals? It’s a bit shaky but… all right.

So what are fulvic acids?

That’s an interesting question. I had never heard of fulvic acids. They do, as it turns out, have a Wikipedia page (Wikipedia is usually very reliable for chemical information, since no one has yet been very interested in spoofing chemical pages to claim things like hydrochloric acid is extracted from the urine of pregnant unicorns) but the information wasn’t particularly enlightening. The page did inform me that fulvic acids are “components of the humus” (in soil) and are  “similar to humic acids, with differences being the carbon and oxygen contents, acidity, degree of polymerization, molecular weight, and color.” The Twitter hive-mind, as you can see, was sending me down the same path…

A typical example of a humic acid.

Next stop, humic acids. Now we’re getting somewhere. These are big molecules with several functional groups. The chemists out there will observe that, yes, they contain several carboxylic acid groups (the COOH / HOOC ones you can see in the example) so, yes, it makes sense they’d behave as acids.

“No nasties”, blk said. “Pure” they said. When you hear those sorts of things, do you imagine something like this is in your drink? Especially one that, let’s be clear, is a component of soil?

Oh, hang on, I should’ve checked the “blk explained” page on the blk water website. There’s a heading which actually says “what are Fulvic Minerals”, let’s see now…

“Fulvic minerals are plant matter derived from millions of years ago that have combined with fulvic acid forming rare fulvic mineral deposits. They deliver some of the most powerful electrolytes in the world.”

“Fulvic minerals contain 77 other trace minerals, most of which have an influence on the healthiness of our body. They are very high in alkaline and when sourced from the ground contain a pH of 9.”

I don’t know about you, but I’m not totally convinced. I mean, as @geolizzy says in her tweet here (excuse the minor typo, she means humic, not humid),  it sounds a bit like… water contaminated with hydrocarbon deposits?

Yummy.

And, by the way, the phrase “very high in alkaline” is utterly meaningless. Substances are alkaline, or they contain substances which are alkaline. “Alkaline” is not a thing in itself. This is like saying my tea is high in hot when sourced from the teapot.

There’s one more thing to add. So far this might sound a bit weird but… probably safe, right? What could be more wholesome than a bit of soil? Didn’t your granny tell you to eat a pinch of soil to boost your immune system, or something? At worst it’s harmless, right?

Tap water is chlorine-treated to keep it free of nasty bacteria.

Maybe. But then again… water is often treated with chlorine compounds to keep it bacteria-free. Now, blk water is supposedly spring water, which isn’t usually treated. But hypothetically, let’s consider what happens when humic acids, or fulvic acids, or whatever we’re calling them, come into contact with chlorine-treated water.

Oh dear. It seems that dihaloacetonitriles are formed. (See also this paper.) This is a group of substances (possibly the best known one is dichloroacetonitrile) which are variously toxic and mutagenic. Let’s hope that spring water is totally unchlorinated, 100% “we really got it from out of a rock” spring water, then.

To sum up: it is black, and that’s kind of weird and a fun talking point – although if you like the idea of a black drink you can always drink cola. It doesn’t balance your pH levels – nothing does. I don’t believe it replenishes electrolyte levels either – how can it when it doesn’t contain sodium? – and I’m dubious about the “2 ingredients” claim (could you tell?). And the oh-so-healthy-sounding fulvic minerals are most likely due to contamination from coal deposits.

All in all, whilst it might not be quite such a conversation piece, I think it would be better to get Great-uncle Nigel a nice box of chocolates this year.


Like the Chronicle Flask’s Facebook page for regular updates, or follow @chronicleflask on Twitter. All content is © Kat Day 2017. You may share or link to anything here, but you must reference this site if you do.


All comments are moderated. Abusive comments will be deleted, as will any comments referring to posts on this site which have had comments disabled.

Buy Me a Coffee at ko-fi.com

Absurd alkaline ideas – history, horror and jail time

I’ve written about the absurdity of alkaline diets before, and found myself embroiled in more than one argument about the idea.

To sum up quickly, it’s the notion that our bodies are somehow “acidic”, and if only we could make them “alkaline” all our health problems – cancer included – would disappear. The way you make your body “alkaline” is, mainly, by eating lots of vegetables and some fruits (particularly citrus fruits – yes, I know, I know).

The eating fruit and vegetables bit aside (they’re good for you, you should eat them), it’s all patent nonsense. Our bodies aren’t acidic – well, other than where they’re supposed to be acidic (like our stomachs) – and absolutely nothing we eat or drink can have any sort of effect on blood pH, which is kept firmly between 7.35-7.45 by (mainly) our lungs and kidneys. And if your kidneys or lungs are failing, you need something a little stronger in terms of medical intervention than a slice of lemon.

But who first came up with this crazy idea?

Claude Bernard carried out experiments on rabbits.

Actually, we can probably blame a nineteenth century French biologist and physiologist, Claude Bernard, for kicking the whole thing off, when he noticed that if he changed the diet of rabbits from largely plant-based to largely animal-based (i.e. from herbivorous to carnivorous) their urine became more acidic.

This observation, followed by a lot of speculation by nutritionists and some really quite impressively dodgy leaps of reasoning (by others, I should stress – not Bernard himself), has lead us to where we are now: umpty-million websites and books telling anyone who will listen that humans need to cut out all animal products to avoid becoming “acidic” and thus ill.

Bernard’s rabbits were, it seems, quite hungry when he got them – quite possibly they hadn’t been fed – and he immediately gave them boiled beef and nothing else. Meat contains the amino acids cysteine and methionine, both of which can produce acid when they’re metabolised (something Bernard didn’t know at the time). The rabbits excreted this in their urine, which probably explains why it became acidic.

Now, many of you will have noticed several problems here. Firstly, rabbits are herbivores by nature (they do not usually eat meat in the wild). Humans aren’t herbivores. Humans are omnivores, and we have quite different digestive processes as a result. It’s not reasonable to extrapolate from rabbits to humans when it comes to diet. Plus, even the most ardent meat-lover probably doesn’t only eat boiled beef – at the very least people usually squeeze in a battered onion ring or a bit of coleslaw along the way. Most critically of all, urine pH has no direct relationship with blood pH. It tells us nothing about the pH of “the body” (whatever we understand that to mean).

The notion that a plant-based diet is somehow “alkaline” should really have stayed in the 19th century where it belonged, and at the very least not limped its way out of the twentieth. Unfortunately, somewhere in the early 2000s, a man called Robert O Young got hold of the idea and ran with it.

Young’s books – which are still available for sale at the time of writing – describe him as “PhD”, even though he has no accredited qualification.

Boy, did he run with it. In 2002 he published a book called The pH Miracle, followed by The pH Miracle for Diabetes (2004), The pH Miracle for Weight Loss (2005) and The pH Miracle Revised (2010).

All of these books describe him either as “Dr Robert O Young” or refer to him as “PhD”. But he has neither a medical qualification nor a PhD, other than one he bought from a diploma mill – a business that offers degrees for money.

The books all talk about “an alkaline environment” and state that so-called acidic foods and drinks (coffee, tea, dried fruit, anything made with yeast, meat and dairy, amongst other foodstuffs) should be avoided if not entirely eliminated.

Anyone paying attention will quickly note that an “alkaline” diet is basically a very restrictive vegan diet. Most carbohydrate-based foods are restricted, and lots of fruits and nuts fall into the “moderately” and “mildly” acidic categories. Whilst a vegan diet can be extremely healthy, vegans do need to be careful that they get the nutrients they need. Restricting nuts, pulses, rice and grains as well as removing meat and dairy could, potentially, lead to nutritional deficiencies.

Young also believes in something called pleomorphism, which is a whole other level of bonkers. Essentially, he thinks that viruses and bacteria aren’t the cause of illnesses – rather, the things we think are viruses and bacteria are actually our own cells which have changed in response to our “acidic environments”. In Young’s mind, we are making ourselves sick – there is one illness (acidosis) and one cure (his alkaline diet).

It’s bad enough that he’s asserting such tosh and being taken seriously by quite a lot of people. It’s even worse that he has been treating patients at his ranch in California, claiming that he could “cure” them of anything and everything, including cancer.

One of his treatments involved intravenous injections of solutions of sodium hydrogen carbonate, otherwise known as sodium bicarbonate or baking soda. This common cookery ingredient does produce an alkaline solution (about pH 8.5) when dissolved in water, but remember when I said blood pH was hard to shift?

Screenshot from a BBC article, see http://www.bbc.co.uk/news/magazine-38650739

Well, it is, and for good reason. If blood pH moves above the range of 7.35-7.45 it causes a condition called alkalosis. This can result in low blood potassium which in turn leads to muscle weakness, pain, and muscle cramps and spasms. It can also cause low blood calcium, which can ultimately result in a type of seizure. Putting an alkaline solution directly into somone’s blood is genuinely dangerous.

And this is before we even start to consider the fact that someone who was not a medical professional was recommending, and even administering, intravenous drips. Which, by the way, he was reportedly charging his patients $550 a pop to receive.

Young came to the attention of the authorities several times, but always managed to wriggle out of trouble. That is, until 2014, when he was arrested and charged with practising medicine without a license and fraud. In February last year, he was found guilty, but a hung jury caused complications when they voted 11-1 to convict on the two medical charges, but deadlocked 8-4 on fraud charges.

Finally, at the end of June 2017, he was sentenced. He was given three years, eight months in custody, but due to the time he’s already spent in custody and under house arrest, he’s likely to actually serve five months in jail.

He admitted that he illegally treated patients at his luxury Valley Center ranch without any medical or scientific training. Perhaps best of all, he was also made to publicly declare that he is not microbiologist, hematologist, medical doctor or trained scientist, and that he has no post-highschool educational degrees from any accredited school.

Prosecuting Deputy District Attorney Gina Darvas called Young the “Wizard of pHraud”, which is rather apt. Perhaps the titles on his books could be edited to read “Robert O Young, pHraud”?


Like the Chronicle Flask’s Facebook page for regular updates, or follow @chronicleflask on Twitter. All content is © Kat Day 2017. You may share or link to anything here, including the images, but you must reference this site if you do.


All comments are moderated. Abusive comments will be deleted, as will any comments referring to posts on this site which have had comments disabled.