Brilliant Bee Chemistry!

20th May is World Bee Day, the aim of which is to raise awareness of the importance of bees and beekeeping. So, hey, let’s do that!

I’m helped this month by my horticulturist* dad who, while working in a public garden recently, discovered this honeybee swarm in a honeysuckle. (Me: “what sort of tree is that?” Dad: “a winter flowering Honeysuckle lonicera. It’s a shrub, not a tree!” Yes, despite his tireless efforts I’m still pretty clueless about plants.)

Now, Dad knows what he’s doing in such situations. He immediately called the professionals. One does not mess around with (or ignore) a swarm of bees – one finds a beekeeper, stat. Obviously bees can sting, but they’re also endangered and they need to be collected to protect them. Should you find yourself in such a situation, you can find someone local via the British Beekeepers Association website.

That out of the way, aren’t they gorgeous? A swarm like this is a natural phenomenon, that happens when new queen bees are born and raised in the colony. Worker bees stop feeding the old queen – because a laying queen is too heavy to fly – and then in time she leaves with a swarm. They cluster somewhere, as you see in the photo, while scout bees go looking for a new location to settle. Bees in swarms only have the honey or nectar in their stomachs to keep them going, so they’ll starve if they don’t find a new home, and nectar, quickly.

This is all fascinating, of course, but what does it have to do with chemistry? Well, quite a bit, because bees are brilliant chemists. Really!

Ethyl oleate is an ester and an important chemical for bees (image source)

Firstly, despite what DreamWorks might have taught us, bees don’t have vocal cords, and they don’t sound like Jerry Seinfeld. A lot of their communication is chemical-based (actually, it turns out this is a topic of hot debate in bee circles, but since this is a chemistry blog, I’m not doing waggle dances. No, not even if you ask nicely).

As you might imagine, there are multiple chemicals involved, and I won’t go into all of them. Many are esters, which are known for their sweet, fruity smells, and which are also (at least, the longer-chain ones) the building blocks of fats.

One such chemical is ethyl oleate which plants produce and which, interestingly, we humans also make in our bodies when we drink alcohol. Forager bees gather ethyl oleate and carry it in their stomachs, and they then feed it to worker bees. It has the effect of keeping those workers in a nurse bee state and prevents them from maturing into forager bees too early. But, as forager bees die off, less ethyl oleate is available, and this “tells” the nurse bees to mature more quickly – so the colony makes more foragers. Clever, eh?

In this situation, ethyl oleate is acting as a pheromone, in other words, a substance that triggers a social response in members of the same species. Another example is Nasonov’s pheromone, which is a mixture of chemicals including geraniol (think fresh, “green” smell), nerolic acid, geranic acid (an isomer of nerolic acid) and citral (smells of lemon).

The white gland at the top of the honeybee’s abdomen releases pheromones which entice the swarm to an empty hive (image source)

An interesting aside: geranic acid has been investigated as an antiseptic material. It can penetrate skin, and has been shown to help the delivery of transdermal antibiotics, which are being investigated partly as a solution to the problem of antibiotic resistance. Nature is, as always, amazing.

Anyway, worker bees (which, again contrary to DreamWorks’ narrative, are female) release Nasonov’s pheromone to orient returning forager bees (also female) back to the colony. They do this by raising up their abdomens and fanning their wings. Beekeepers can use synthetic Nasonov pheromone, sometimes mixed with a “queen bee pheromone” to attract honeybee swarms to an unoccupied hive or swarm-catching box.

As my Dad chatted to the beekeepers (partly on my insistence – I was on the other end of my phone texting questions and demanding photos) one substance they were particularly keen to mention was “the alarm pheromone,” which “smells of bananas.”

Ooh, interesting, I thought. Turns out, this is isoamyl acetate, which is another ester. In fact, depending on your chemistry teacher’s enthusiasm for esters, you might even have made it in school – it forms when acetic acid (the vinegary one) is combined with 3-methylbutan-1-ol (isoamyl alcohol).

Never eat a banana by a bee.

Isoamyl acetate is used to give foods a banana flavour and scent. But, funnily enough, actual bananas you buy in the shops today don’t contain very much of it, the isoamyl acetate-rich ones having been wiped out by a fungal plague in the 1990s. This has lead to the peculiar situation of banana-flavoured foods tasting more like bananas than… well… bananas.

Modern bananas can still be upset bees, though. There are numerous stories of unwary individuals who walked too close to hives while eating a banana and been attacked. So, top tip: if you’re going on a picnic, leave the bananas (and banana-flavoured sweets, milkshakes etc) at home.

The reason is that banana-scented isoamyl acetate is released when honeybees sting. They don’t do this lightly, of course, since they can’t pull out the barbed stinger afterwards, and that means the bee has to leave part of its digestive tract, muscles and nerves embedded in your skin. It’s death for the bee, but the act of stinging releases the pheromone, which signals other bees to attack, attack, attack.

One bee sting might not deter a large predator, but several stings will. Multiple bee stings can trigger a lethal anaphylactic reaction, known allergy or not. So although utilising their stingers causes the death of a few (almost certainly infertile) bees, the rest of the colony (including the fertile individuals) is more likely to survive. From an evolutionary perspective it’s worth it – genes survive to be passed on.

Isoamyl acetate

Isoamyl acetate is an ester that smells of bananas, and is an alarm pheremone for bees (image source)

Moving on, I obviously can’t write a whole blog post about bees and not mention honey! We take it for granted, but it’s amazingly complicated. It contains at least 181 different substances, and nothing human food scientists have been able to synthesise quite compares.

In terms of sugars, it’s mostly glucose and fructose. Now, I’ve written about sugars extensively before, so I won’t explain them yet again, but I will just reiterate my favourite soap-box point: your body ultimately doesn’t distinguish between “processed” sugars in foods and the sugars in honey. In fact, one might legitimately argue that honey is massively processed, just, you know, by bees. So, you want to cut down on your sugar intake for health reasons? Sorry, but honey needs to go, too.

Honey is actually a supersaturated solution. In very simple terms, this means there’s an excess of sugar dissolved in a small amount of water. One substance which bees use to achieve this bit of clever chemistry is the enzyme, invertase, which they produce in their salivary glands. Nectar contains sucrose (“table sugar”) and, after the bees collect nectar, invertase helps to break it down into the smaller molecules of glucose and fructose.

“Set” honey is honey that’s been crystallised in a controlled way.

That’s only the beginning, though. There are lots of other enzymes involved. Amylase breaks down another sugar, amylose, into glucose. And glucose oxidase breaks down glucose and helps to stabilise the honey’s pH. One of the molecules produced in the reaction with glucose oxidase produces is hydrogen peroxide, which yet another enzyme, catalase, further breaks down into water and oxygen.

Bees regurgitate and re-drink nectar (yes, I suggest you don’t overthink it) over a period of time, which both allows the sugar chemistry to happen and also reduces the water content. When it’s about one-fifth water, the honey is deposited in the honeycomb, and the bees fan it with their wings to speed up the evaporation process even further. They stop when it’s down to about one-sixth water.

As I said a moment ago, honey is a supersaturated solution, and that means it’s prone to crystallising. This isn’t necessarily bad, in fact, “set” honey (my personal favourite) is honey which has been crystallised in a controlled way, so as to produce fine crystals and a creamy (rather than grainy) product.

The formation of a new honeycomb.

The potential problem with crystallisation is that once the sugar crystals fall out of solution, the remaining liquid has a higher-than-ideal percentage of water. This can allow microorganisms to grow. In particular, yeasts can take hold, leading to fermentation. Honey left on the comb in the hive tends not to crystallise, but once it’s collected and stored, there’s a greater chance that some particle of something or other will get in there and trigger the process. It helps to store it somewhere above room temperature. And honey is naturally hygroscopic, which means it absorbs water. So store it somewhere dry. In short, never put honey in the fridge.

Speaking of yeast and heat, heating changes honey and makes it darker in colour, thanks to the Maillard reaction. Commercial honey is often pasteurized to kill any yeast, which improves its shelf life and produces a smoother product. Also, because honey is naturally slightly acidic (around pH 4), over time the amino acids within in start to break down and this also leads to a darkening of the colour.

One more important safety concern: honey, even when pasteurized, can contain bacteria that produce toxins in a baby’s intestines and lead to infant botulism. So, never give children under one honey. It’s not a risk for older children (and adults) thanks to their more mature digestive systems.

T

Back to Dad’s bees! They were collected in a transport box by two local experts, Sharon and Ian. The bees march into the box two-by-two, wafting Nazonov’s pheromone to signal that this is home. From there, they were safely transferred to a new, wooden hive.

There’s only one way to finish this post, I think, and that’s with one of my all-time favourite Granny Weatherwax moments:

‘Your bees,’ she went on, ‘is your mead, your wax, your bee gum, your honey. A wonderful thing is your bee. Ruled by a queen, too,’ she added, with a touch of approval.

‘Don’t they sting you?’ said Esk, standing back a little. Bees boiled out of the comb and overflowed the rough wooden sides of the box.

‘Hardly ever,’ said Granny. ‘You wanted magic. Watch.’

Happy World Bee Day, everyone and, as always, GNU Terry Pratchett.


* Dad was unsure about the label “horticulturist” but I pointed out that the definition is an expert in garden cultivation and management, particularly someone’s who’s paid for their work. All of which he is. He replied wryly that, “x is an unknown quantity, and a spurt is a long drip.” Love you, Dad x 😄


If you’re studying chemistry, have you got your Pocket Chemist yet? Why not grab one? It’s a hugely useful tool, and by buying one you’ll be supporting this site – it’s win-win! If you happen to know a chemist, it would make a brilliant stocking-filler! As would a set of chemistry word magnets!

Like the Chronicle Flask’s Facebook page for regular updates, or follow @chronicleflask on Twitter. Content is © Kat Day 2021. You may share or link to anything here, but you must reference this site if you do. If you enjoy reading my blog, and especially if you’re using information you’ve found here to write a piece for which you will be paid, please consider buying me a coffee through Ko-fi using the button below.
Buy Me a Coffee at ko-fi.com

Want something non-sciency to distract you from, well, everything? Why not check out my fiction blog: the fiction phial.

 

Onerous ovens: why is cleaning the cooker such a chore?

As I write Thanksgiving was a few days ago, when most Americans traditionally cook a very large meal based around roasted turkey. Most Brits – and other countries of course – have the same thing coming up soon in the form of Christmas, and there are lots of other celebrations around this time of year that seem to feature cooking and food quite heavily.

Whatever your traditions, then, it’s a time when many of us frown critically at the dark, sticky depths of our oven and wonder if, perhaps, we should attempt to give it a clean. Or at least pay someone else to come and clean it.

Why is oven cleaning such a difficult and unpleasant job, anyway? It’s not that hard to clean other surfaces, is it? Why are ovens so particularly awful?

Well, to explain this, we first need to understand fats.

Fats vaporise during cooking.

Most of the grime in your oven is fat, combined with the carbonised remains of… something or other. The sorts of fats that are common in animal and plant products have boiling points around the 300 oC mark (animal fats typically having higher values than plant oils), but they start to form vapours at much lower temperatures, and certainly at typical cooking temperatures there’s plenty vaporised oil around. Besides, under typical conditions most oils will “smoke” – i.e. start to burn – long before they get close to boiling.

We’re all familiar with the idea that fats don’t mix well with water, and herein lies the problem: all that fatty gloop that’s stuck to the inside of your oven just doesn’t want to come off with standard cleaning methods, particularly when it’s built up over time.

Can chemistry help us here? What are fats, chemically? Well, they’re esters. Which may or may not mean anything to you, depending on how much chemistry you can remember from school. But even if you don’t remember the name, trust me, you know the smell. In particular, nail polishes and nail polish removers contain the simple ester known as ethyl acetate, otherwise known as ethyl ethanoate. (Some people say this chemical smells like pear drops which… only really helps if you know what pear drops smell like. Look, it smells of nail polish, okay?)

Fats are esters (image source)

Anyway, the point is that esters have a particular sequence of atoms that has a carbon bonded to an oxygen, which is bonded to another carbon, which is in turn double-bonded to oxygen. This is a bit of a mouthful, so chemists often write it as COOC. In the diagram here, oxygen atoms are red while carbon atoms are black.

There are actually three ester groups in fat molecules – which explains why fats are also known as triglycerides.

In terms of general chemistry, esters form when a carboxylic acid (a molecule which contains a COOH group) reacts with an alcohol (a molecule that contains an OH group). And this is where it all starts to come together – honest – because you’ve probably heard of fatty acids, right? If nothing else, the words turn up in certain food additive names, in particular E471 mono- and diglycerides of fatty acids, which is really common in lots of foods, from ice cream to bread rolls.

Glycerol is a polyol — a molecule that contains several alcohol groups (image source)

Well, this reaction is reversible, and as a result fats (which are esters, remember) break up into fatty acids and glycerol – which is a polyol, that is, a molecule with several alcohol groups. Or, to look at it the other way around: fats are made by combining fatty acids with glycerol.

And the reason it’s useful to understand all this is that the way you break up esters, and therefore fat, is with alkalis. (Well, you can do it with acid, too, but let’s not worry about that for now.)

Strong alkalis break up fats in a chemical reaction called hydrolysis — the word comes from the Greek for water (hydro) and unbind (lysis) and so literally means “split up with water”. Humans have known about this particular bit of chemistry for a long time, because it’s fundamental to making soap. As I said a few months ago when I was banging on about hand-washing, the ancient Babylonians were making soap some 4800 years ago, by boiling fats with ashes – which works because alkaline compounds of calcium and potassium form when wood is burnt at high temperatures.

The grime in ovens is mostly fat.

The really clever thing about all this is that two things are happening when we mix alkali with fat: not only are we breaking up the fat molecules, but also the substances they break up into are water-soluble (whereas fats, as I said at the start, aren’t). Which makes them much easier to clean away with water. Obviously this is the very point of soap, but it’s also handy when trying to get all that baked-on gunk off your oven walls.

Now, in theory, this means you could get some lye (aka sodium hydroxide, probably), smear it all over your oven and voilà. But I don’t recommend it, for a few reasons. Firstly, it’s going to be difficult to apply, since sodium hydroxide is mostly sold as pellets or flakes (it’s pretty easy to buy, because people use it to make soap).

Sodium hydroxide, sometimes called lye, is often sold in the form of pellets.

But, you say, couldn’t I just dissolve it in water and spray or spread it on? Yes, yes you could. But it gets really, really hot when you mix it with water. So you need to be incredibly careful. Because, and this is my next point, chemically your skin is basically fat and protein, and this reaction we’re trying to do on oven sludge works equally well on your skin. Only, you know, more painfully, and with scarring and stuff. In short, if you’re handing lye, wear good nitrile on vinyl gloves and eye protection.

Actually, regardless of how you’re cleaning your oven you should wear gloves and eye protection, because the chemicals are still designed to break down fats and so… all of the above applies. It’s just that specially-designed oven cleaners tend to come with easier (and safer) ways to apply them. For example, they might come as a gel which you can paint on, and/or with bags that you can put the racks into, and may also be sold with gloves and arm protectors (but rarely goggles – get some separately). They might also have an extra surfactant, such as sodium laureth sulfate, added to help with breaking down grease. The main ingredient is still either potassium hydroxide or sodium hydroxide, though.

Well, possibly, but also not really, if you’re sensible.

As an aside, it makes me smile when I come across an article like this which talks about the “serious” chemicals in oven cleaners and more “natural” ways to clean your oven. The “natural” ways are invariably weak acids or alkalis such as lemon juice or baking soda, respectively. They’re essentially ineffective ways of trying to do exactly the same chemistry.

And okay, sure, the gel and the bag and so on in the modern kits are newer tech, but the strong alkali? Nothing more natural than that. As I said at the start, humans have literally been using it for thousands of years.

A point which really cannot be repeated enough: natural does not mean safe.

Fumes can be irritating to skin, eyes and lungs.

Speaking of which, you will get fumes during oven cleaning. Depending on the exact cleaning mixture involved, these will probably be an alkaline vapour, basically (haha) forming as everything gets hot. Such vapour is potentially irritating to skin, eyes and lungs, but not actually deadly toxic. Not that I recommend you stick your head in your freshly-scrubbed oven and inhale deeply, but you take my point. It might give food a soapy, possibly bitter (contrary to what’s stated in some text books, not all alkalis taste bitter, but do not experiment with this) taste if you really over-do it.

In short, if you’re cleaning your oven yourself: follow the manufacturer’s instructions, make sure your kitchen is well-ventilated, leave the oven door open for a while after you’ve finished and, to be really sure, give all the surfaces an extra wash down with plenty of water.

Put the cleaning off until January – after all, the oven’s only going to get dirty again.

And that’s… it, really. Whether you’re cleaning your own oven or getting someone else to do it for you, the chemistry involved is really, really old. And yes, the chemicals involved are hazardous, but not because they’re not “natural”. Quite the opposite.

Or you could just leave it. I mean, it’s only going to get dirty again when you cook Christmas dinner, right?


If you’re studying chemistry, have you got your Pocket Chemist yet? Why not grab one? It’s a hugely useful tool, and by buying one you’ll be supporting this site – it’s win-win! If you happen to know a chemist, it would make a brilliant stocking-filler! As would a set of chemistry word magnets!

Like the Chronicle Flask’s Facebook page for regular updates, or follow @chronicleflask on Twitter. Content is © Kat Day 2020. You may share or link to anything here, but you must reference this site if you do. If you enjoy reading my blog, and especially if you’re using information you’ve found here to write a piece for which you will be paid, please consider buying me a coffee through Ko-fi using the button below.
Buy Me a Coffee at ko-fi.com

Want something non-sciency to distract you from, well, everything? Why not check out my fiction blog: the fiction phial.

A natural remedy that’s full of chemicals?

Blossoms

The summer holidays are here! A time when parents of small children find themselves exploring every park in their local vicinity, quite probably several times (whilst hoping against hope that it doesn’t rain). On just such a quest myself, I recently visited one particular park that was filled with a gorgeous smell.

What was it? A bit of sniffing around quickly identified this tree. Now, I am not a botanist (or even much of a gardener), so I immediately resorted to the rather wonderful Seek app by iNaturalist, which uses some very clever image recognition software to identify plants and animals (disclaimer: accuracy is not guaranteed — don’t eat anything based on this app!)

Seek told me that this was a lime tree, or a linden (genus Tilia). A bit of cross-referencing (thanks Dad!) suggested that it had identified the tree correctly. It’s not an uncommon plant: you’ll probably come across it yourself if you go looking (or smelling).

The name ‘linden’ was more familiar to me. The wood is soft and easily worked, and is used to make musical instruments because it has good acoustic properties. It’s also used to make wooden blinds and other pieces of furniture because it’s lightweight, stable, and holds stains and finishes well.

Linden blossoms can be used to make tea.

But let’s go back to the flowers and their delicious scent. The tree blooms during July and August in the Northern hemisphere. The flowers are sometimes described as mucilaginous — which is a fabulous word meaning, basically, thick and sticky. More specifically: “containing a polysaccharide substance that is extracted as a viscous or gelatinous solution and used in medicines and adhesives.”

Linden flowers are a ‘natural remedy’ with a list of applications in herbal medicine as long as your arm. They contain lots of different substances. One that comes up a lot is farnesol, which is actually a type of alcohol. Of course, it’s nothing like the alcohol we’re familiar with from drinks, which is the much simpler ethanol — but it’s important to remember that ‘alcohol’ actually refers to a class of compounds (which, in simple terms, contain an -OH group like the one in the image here) and not a single substance.

The chemical structure of farnesol

Farnesol turns up in lots of essential oils, such as citronella, rose and lemon grass. It’s used in perfumes to enhance floral scents. But plants don’t make substances just to please humans (well, it’s complicated…). It acts as a pheromone for several insects. Sometimes this doesn’t work out so well for the insects, as it confuses their mating behaviour and effectively acts as a natural pesticide. On the other hand, it actively encourages others: bumblebees release farnesol when they return to the hive to spur other bees into action. It’s the bee equivalent of shouting, ‘oi! Move it you lot, pollen this way!’

Farnesol acts as a pheromone for bumblebees.

Linden flowers also contain one of my all-time favourite chemicals, benzaldehyde. That’s the one that smells of almonds and isn’t a deadly cyanide salt. Its delicious almondy-ness is the reason it’s used as a flavouring and scent, but it’s also a starting material for loads of different chemicals, for example the dye malachite green, which is used to give a green colour to leather, fabric and paper. A form of this dye called ‘brilliant green‘ is mixed with a second, violet, dye to make ‘Bonney’s blue,’ a disinfectant dye used to mark skin for surgeries. Benzaldehyde is also used to make styrene, which is of course used to make the well-known packing material, polystyrene.

And these are just a couple of the substances found in those yummy-smelling flowers. They also contain arabinogalactans, uronic acid, tannins, rutin, hyperoside, quercitrin, isoquercitrin, astragalin and others. In short, a veritable cocktail of different chemicals.

So next time you smell the scent of a lovely flower, just think about all the amazing chemical substances the plant is making. All natural, of course!


Like the Chronicle Flask’s Facebook page for regular updates, or follow @chronicleflask on Twitter. Content is © Kat Day 2019. You may share or link to anything here, but you must reference this site if you do. If you enjoy reading my blog, please consider buying me a coffee through Ko-fi using the button below.
Buy Me a Coffee at ko-fi.com

Is acrylamide in your toast really going to give you cancer?

Acrylamide has been in the news today, and this might be the understatement of the year. Front page newspaper headlines have been yelling everything from “Brits officially warned off chips” to “Over-cooked potatoes and burnt toast could cause cancer” to the marginally more restrained “What is the real cancer risk from eating roast potatoes or toast?” All this has been accompanied by radio interviews with everyone from actual scientists to professional chefs to people keen to share their roast potato recipes. I expect there have been television interviews too – I haven’t had a chance to watch.

Hey, what could be more traditional, or more fun, than a food-health scare in January?

Acrylamide

Acrylamide

Never fear, the Chronicle Flask is here to sort out the science. Let’s get to the facts: what is acrylamide?

It’s actually a rather small molecule, and it falls into a group of substances which chemists call amides. Other well-known amides include paracetamol and penicillin, and nylon is a polyamide – that is, lots of amide molecules joined together. Amide linkages (the CO-NH bit) are a key feature of proteins, which means they appear in all kinds of naturally-occurring substances.

And this is where the food-acrylamide link comes in. Because acrylamide, or prop-2-enamide to give it its official name (the one only ever used by A-level chemistry students), forms when certain foods are cooked.

Acrylamide occurs naturally in fried, baked, and roasted starchy foods.

Acrylamide occurs naturally in fried, baked, and roasted starchy foods.

It begins with an amino acid called asparagine. If you’re wondering whether, with that name, it has anything to do with asparagus, you’d be on the right track. It was first isolated in the early 1800s from asparagus juice. It turns out to be very common: it’s found in dairy, meat, fish and shellfish, as well as potatoes, nuts, seeds and grains, amongst other things.

This is where the trouble begins. When asparagine is combined with sugars, particularly glucose, and heated, acrylamide is produced. The longer the food is heated for, the more acrylamide forms. This is a particular issue with anything wheat or potato-based thanks to the naturally-occurring sugars those foods also contain – hence all the histrionics over chips, roast potatoes and toast.

How dangerous is acrylamide? The International Agency for Research on Cancer have classified it as a Group 2A carcinogen, or a “probable” carcinogen. This means there’s “limited evidence” of carcinogenicity in humans, but “sufficient evidence” of carcinogenicity in experimental animals. In other words (usually) scientists know the thing in question causes cancer in rats – who’ve generally been fed huge amounts under strictly controlled conditions – but there isn’t any clear evidence that the same link exists in humans. It’s generally considered unethical to lock humans in cages and force feed them acrylamide by the kilo, so it’s tricky to prove.

screen-shot-2017-01-23-at-22-10-46At this point I will point out that alcoholic beverages are classified as Group 1 carcinogens, which means there is “sufficient evidence” of carcinogenicity in humans. Alcohol definitely causes cancer. If you’re genuinely concerned about your cancer risk, worry less about the roast potatoes in your Sunday roast and more about the glass of wine you’re drinking with them.

But back to acrylamide. In animals, it has been shown to cause tumours. It’s one of those substances which can be absorbed through the skin, and after exposure it spreads around the body, turning up in the blood, unexposed skin, the kidneys, the liver and so on. It’s also been shown to have neurotoxic effects in humans. BUT, the evidence that it causes cancer in humans under normal conditions isn’t conclusive. A meta-analysis published in 2014 concluded that “dietary acrylamide is not related to the risk of most common cancers. A modest association for kidney cancer, and for endometrial and ovarian cancers in never smokers only, cannot be excluded.” 

The dose makes the poison is an important principle in toxicology (image credit: Lindsay Labahn)

The dose makes the poison (image credit: Lindsay Labahn)

As I so often find myself saying in pieces like this: the dose makes the poison. The people who have suffered neurotoxic effects from acrylamide have been factory workers. In one case in the 1960s a patient was handling 10% solutions of the stuff, and “acknowledged that the acrylamide solution frequently had splashed on his unprotected hands, forearms and face.” The earliest symptom was contact dermatitis, followed by fatigue, weight loss and nerve damage.

Because of these very real risks, the Occupational Safety and Health Administration and the National Institute for Occupational Safety and Health have set occupational exposure limits at 0.03 mg/m3 over an eight-hour workday, or 0.00003 g/m3.

Let’s contrast that to the amount of acrylamide found in cooked food. The reason all this fuss erupted today is that the Food Standards Agency (FSA) published some work which estimated the amounts of acrylamide people are likely to be exposed to in their everyday diet.

The highest concentrations of acrylamide were found in snacks (potato crisps etc), and they were 360 μg/kg, or 0.00036 g/kg or, since even the most ardent crisp addict doesn’t usually consume their favoured snacks by the kilo, 0.000036 g/100g. (Remember that those occupational limits are based on continuous exposure over an eight-hour period.)

In other words, the amounts in even the most acrylamide-y of foodstuffs are really quite tiny, and the evidence that acrylamide causes cancer in humans is very limited anyway. There is some evidence that acrylamide accumulates in the body, though, so consuming these sorts of foods day in and day out over a lifetime could be a concern. It might be wise to think twice about eating burnt toast every day for breakfast.

Oh yes, and there’s quite a lot of acrylamide in cigarette smoke. But somehow I doubt that if you’re a dedicated smoker this particular piece of information is going to make much difference.

As the FSA say at the end of their report:

Your toast almost certainly isn't going to kill you.

Your toast almost certainly isn’t going to kill you.

“The dietary acrylamide exposure levels for all age classes are of possible concern for an increased lifetime risk of cancer. The results of the survey do not increase concern with respect to acrylamide in the UK diet but do reinforce FSA advice to consumers and our efforts to support the food industry in reducing acrylamide levels.”

This is not, I would suggest, QUITE the same as “Crunchy toast could give you cancer, FSA warns” but, I suppose, “FSA says risk hasn’t really changed” wouldn’t sell as many newspapers.

One last thing, there’s acrylamide in coffee – it forms when the beans are roasted. There’s more in instant coffee and, perhaps counterintuitively, in lighter-roasted beans. No one seems to have mentioned that today, possibly because having your coffee taken away in January is just too terrifying a prospect to even contemplate. And also perhaps because coffee seems to be associated with more health benefits than negatives. Coffee drinkers are less likely to develop type 2 diabetes, Parkinson’s disease, dementia, suffer fewer cases of some cancers and fewer incidences of stroke. Whether the link is causal or not isn’t clear, but coffee drinking certainly doesn’t seem to be a particularly bad thing, which just goes to show that when it comes to diet, things are rarely clearcut.

Pass the crisps, someone.


Like the Chronicle Flask’s Facebook page for regular updates, or follow @chronicleflask on Twitter. In need of a groovy new mug for your oh-so-healthy coffee? Check out this page.


All comments are moderated. Abusive comments will be deleted, as will any comments referring to posts on this site which have had comments disabled.

 

The Chronicles of the Chronicle Flask: 2016

2016 is limping to its painful conclusion, still tossing out last-minute nasty surprises like upturned thumb tacks in the last few metres of a marathon. But the year hasn’t been ALL bad. Some fun, and certainly interesting, things happened too. No, really, they did, honestly.

So with that in mind, let’s have a look back at 2016 for the Chronicle Flask….

January kicked off with a particularly egregious news headline in a well-known broadsheet newspaper: Sugar found in ketchup and Coke linked to breast cancer. Turns out that the sugar in question was fructose. Yes, the sugar that’s in practically everything, and certainly everything that’s come from a plant. So why did the newspaper in question choose ketchup and Coke for their headline instead of, oh, say, fruit juice or honey? Surely not just in an effort to sell a few more newspapers after the overindulgent New Year celebrations. Surely.

octarineThere was something more lighthearted to follow when IUPAC  verified the discoveries of elements 113, 115, 117 and 118. This kicked off lots of speculation about the elements’ eventual names, and the Chronicle Flask suggested that one of them should be named Octarine in honour of the late Sir Terry Pratchett. Amazingly, this suggestion really caught everyone’s imagination. It was picked up in the national press, and the associated petition got over 51 thousand signatures!

In February I wrote a post about the science of statues, following the news that a statue to commemorate Sir Terry Pratchett and his work had been approved by Salisbury City Council. Did you know that there was science in statues? Well there is, lots. Fun fact: the God of metalworking was called Hephaestus, and the Greeks placed dwarf-like statues of him near their Hearths – could this be where the fantasy trope of dwarves as blacksmiths originates?

MCl and MI are common preservatives in cosmetic products

MCl and MI are common preservatives in cosmetic products

My skeptical side returned with a vengeance in March after I read some online reviews criticising a particular shampoo for containing a substance known as methylchloroisothiazolinone. So should you be scared of your shampoo? In short, no. Not unless you have a known allergy or particularly sensitive skin. Otherwise, feel free to the pick your shampoo based on the nicest bottle, the best smell, or the forlorn hope that it will actually thicken/straighten/brighten your hair as promised, even though they never, ever, ever do.

Nature Chemistry published Another Four Bricks in the Wall in April – a piece all about the potential names of new elements, partly written by yours truly. The month also brought a sinus infection. I made the most of this opportunity by writing about the cold cure that’s 5000 years old. See how I suffer for my lovely readers? You’re welcome.

In May I weighed in on all the nonsense out there about glyphosate (and, consequently, learned how to spell and pronounce glyphosate – turns out I’d been getting it wrong for ages). Is it dangerous? Nope, not really. The evidence suggests it’s pretty harmless and certainly a lot safer than most of its alternatives.

may-facebook-postSomething else happened in May: the Chronicle Flask’s Facebook page received this message in which one of my followers told me that my post on apricot kernels had deterred his mother from consuming them. This sort of thing makes it all worthwhile.

In June the names of the new elements were announced. Sadly, but not really very surprisingly, octarine was not among them. But element 118 was named oganesson and given the symbol Og. Now, officially, this was in recognition of the work of Professor Yuri Oganessian, but I for one couldn’t help but see a different reference. Mere coincidence? Surely not.

July brought another return to skepticism. This time, baby wipes, and in particular a brand that promise to be “chemical-free”. They’re not chemical-free. Nothing is chemical-free. This is a ridiculous label which shouldn’t be allowed (and yet, inexplicably, is still in use). It’s all made worse by the fact that Water Wipes contain a ‘natural preservative’ called grapefruit seed extract which, experiments have shown, only actually acts as a preservative when it’s contaminated with synthetic substances. Yep. Turns out some of Water Wipes claims are as stinky as the stuff they’re designed to clean up.

Maria Lenk Aquatic Enter, Tuesday, Aug. 9, 2016. (AP Photo/Matt Dunham)

Maria Lenk Aquatic Enter, Tuesday, Aug. 9, 2016. (AP Photo/Matt Dunham)

August brought the Olympics, and speculation was rife about what, exactly, was causing the swimming pools to turn such strange shades of green. Of course, the Chronicle Flask knew the correct solution…

August also saw MMS and CD reared their ugly heads on social media again. CD (chlorine dioxide) is, lest we forget, a type of bleach solution which certain individuals believe autistic children should be made to drink to ‘cure’ them. Worse, they believe such children should be forced to undergo daily enemas using CD solutions. I wrote a summary page on MMS (master mineral solution) and CD, as straight-up science companion to the commentary piece I wrote in 2015.

mugsSeptember took us back to pesticides, but this time with a more lighthearted feel. Did you know that 99.99% of all the pesticides you consume are naturally-occurring? Well, you do if you regularly read this blog. The Chronicle Flask, along with MugWow, also produced a lovely mug. It’s still for sale here, if you need a late Christmas present… (and if you use the code flask15 you’ll even get a discount!)

In October, fed up with endless arguments about the definition of the word ‘chemical’ I decided to settle the matter once and for all. Kind of. And following that theme I also wrote 8 Things Everyone Gets Wong About ‘Scary’ Chemicals for WhatCulture Science.

Just in case that wasn’t enough, I also wrote a chapter of a book on the missing science of superheroes in October. Hopefully we should see it in print in 2017.

Sparklers are most dangerous once they've gone out.

Sparklers are most dangerous once they’ve gone out.

I decided to mark Fireworks Night in November by writing about glow sticks and sparklers. Which is riskier? The question may not be as straightforward as you’d imagine. This was followed by another WhatCulture Science piece, featuring some genuinely frightening substances: 10 Chemicals You Really Should Be Scared Of.

And that brings us to December, and this little summary. I hope you’ve enjoyed the blog this year – do tell your friends about it! Remember to follow @ChronicleFlask on Twitter and like fb.com/chronicleflask on Facebook – both get updated more or less daily.

Here’s wishing all my lovely readers a very Happy New Year – enjoy a drop of bubbly ethanol solution and be careful with the Armstrong’s mixture…. 

See you on the other side!

new-year-1898553_960_720

Does drinking alcohol actually cause dehydration?

alcohol-effects

Today I came across this article: Drinking water doesn’t prevent a hangover, study says, which includes the memorable line: “[the] study concluded, the only way to prevent a hangover is to drink less alcohol.”

Now, at first sight, you might think that surely this simply another piece of work from the University of the Bleedin’ Obvious.

But hang on. Alcohol does dehydrate you, doesn’t it? Everyone knows that! After all, don’t you wee more when you go drinking, and wake up all sweaty and with a dry mouth after a ‘heavy night’? Surely this is all evidence of fluid loss? Am I really about to suggest we should consign ‘alcohol causes dehydration” to the collection of alcohol-based myths such as mixing drinks gives you a worse hangover (only if you drink more as a result), a night cap will help you sleep (only temporarily, overall it tends to disrupt sleep), drinking beer will cause a ‘beer belly’ (too much of any type of drink can cause weight gain), and so on?

Well…

1024px-Ethanol-3D-balls

There are many alcohols; ethanol is the one we drink.

Firstly, what is alcohol or, more specifically (the word ‘alcohol’ actually refers to a group of compounds), ethanol? It’s a simple molecule, containing only two carbon atoms, an oxygen and some hydrogen atoms. It’s produced, as we all learned at school (or possibly when attempting home-brewing), by yeast during the process of fermentation. Feed this clever little single-celled organism some sugar and voilà, it produces ethanol (C2H5OH) and carbon dioxide via a remarkably simple equation:

C6H12O6 –> 2C2H5OH + 2CO2

220px-Marula01

Marula fruit naturally ferments.

Humans learned this trick a long time ago and have been brewing for literally thousands of years. In fact it doesn’t even require human intervention – marlula fruit is particularly famous for becoming naturally alcoholic (although stories of monkeys and elephants using it to get drunk might be somewhat exaggerated).

We like drinking because, of course, of what it does to us. In medical terms, it’s a central nervous system depressant with significant psychoactive effects (sounds fun, eh?) In English, it reduces anxiety, making drinkers feel relaxed and happy. This accompanies a decrease in motor skills of course, which is why drinking and driving is illegal virtually everywhere (although exact definitions of what this means do vary).

But while alcohol is all natural, it’s not what you’d consider healthy. Every now and then someone drags out some data that suggests that low to moderate alcohol intake is good for you, but this sadly appears to be more wishful thinking than good science. In terms of disease, alcohol consumption has been linked with stroke, high blood pressure, several liver diseases, pancreatitis, a weakened immune system and a handful of cancers including mouth, throat, liver and breast cancers.

In fact, alcohol has been categorised by the International Agency for Research on Cancer as a group 1 carcinogen, which puts it in the company of such other delights as asbestos, radium isotopes, ultraviolet radiation, diesel exhaust and tobacco.

Enjoying-Dinner-copy

Give up alcohol before you worry about your latte ingredients.

Of course, the dose makes the poison. Lots of people enjoy low to moderate alcohol consumption quite safely. Still, I have to admit to being amused by health nuts that insist on a diet consisting of little more than raw vegetables, make a fuss about so-called GMOs, campaign for additives (none of which are anywhere close to being group 1 carcinogens) to be removed from food, and then post pictures of themselves drinking wine. You really want to improve your health? Never mind caramel colour IV in your latte, give up the booze.

So, alcohol isn’t a health food, or indeed drink. But to get back to the original question, does it cause dehydration? Well, it would appear that while it does do a lot of bad stuff health-wise, that’s not one of the bad things it does. In a study, men drank six pints of beer and were then subjected to a number of tests. As the subsequent PubMed article states: “All subjects had a slight hangover, but none was fluid depleted”.

Screen Shot 2015-08-29 at 18.22.08

Twin doctors Chris and Xand van Tulleken in a recent BBC documentary.

In a recent BBC Horizon documentary, twin doctors Chris and Xand van Tulleken collected all their urine during a night in which Xand drank 21 units of alcohol in one sitting (while his brother only had one drink), and next morning demonstrated that the volumes were the same. In other words, the excessive alcohol consumption had not, as is widely believed, had a significant diuretic effect.

Admittedly, this was only two people, and the PubMed study only involved six participants – small sample size is often an issue with such work. The Dutch study I mentioned at the start was much larger, which is one reason it’s useful. In that study, drinking water appeared to make little difference to the severity of the hangover experienced. The only thing that really mattered was, not surprisingly, how much alcohol had been consumed.

In fact it’s not well-understood what does cause hangovers. It would appear it’s linked to an immune system response. In very simple terms, getting blind drunk is a little like self-imposed flu. Drinking plenty of fluids won’t do you any harm, but it’s not actually a solution. Of course, there’s no virus involved here to keep the immune system on the warpath, so for most healthy people the best, and probably only, hangover cure is time.

So in summary, yes, we probably can chuck “alcohol causes dehydration” in with all the other alcohol myths floating around out there, but that’s not an excuse to have a pint after your workout.

Follow The Chronicle Flask on Facebook for regular updates.

Buy Me a Coffee at ko-fi.com

The Chronicle Flask’s festive chemistry quiz!

Tis the season to be jolly! And also for lots of blog posts and articles about the science of christmas, like this one, and this one, and this one, and even this one (which is from last year, but it’s jolly good).

But here’s the question: have you been paying attention? Well, have you? Time to find out with The Chronicle Flask’s festive quiz! I haven’t figured out how to make this interactive. You’ll have to, I don’t know, use a pen and paper or something.

Arbol_de_navidad_con_adornos_de_personajesQuestion 1)
Which scientist invented a chemical test that can be used to coat the inside of baubles with silver?
a) Bernhard Tollens
b) Karl Möbius
c) Emil Erlenmeyer

Question 2)
Reindeer eat moss which contains arachidonic acid… but why is that beneficial to them?
a) a laxative
b) an anti-freeze
c) a spider repellant

1280px-ChristmasCrackers_2Question 3)
Which chemical makes crackers and party poppers go crack?
a) gunpowder
b) silver fulminate
c) nitrogen triiodide

640px-Glass_of_champagneQuestion 4)
We all like a glass of champagne at this time of year, but what’s in the bubbles?
a) carbon dioxide
b) nitrogen
c) oxgyen

Question 5)
What’s the key ingredient in those lovely bath salts you bought for your grandma?
a) calcium carbonate
b) magnesium sulfate
c) citric acid

The Bird - 2007Question 6)
Which chemical reaction is responsible for both perfectly browned biscuits and crispy, golden turkey?
a) Maillard reaction
b) Hodge reaction
c) Caramel reaction

Question 7)
Sucrose-rodmodelWhere are you most likely to find this molecule at this time of year?
a) in a roast beef joint
b) in the wrapping paper
c) in the christmas cake

Question 8)
Let it snow, let it snow, let it snow… but which fact about (pure) water is true?
a) It glows when exposed to ultraviolet light
b) It expands as it freezes
c) It’s a good conductor of electricity

Ethanol-3D-ballsQuestion 9)
Where are you likely to find this molecule on New Year’s Eve?
a) in a champagne bottle
b) in the party poppers
c) in the ‘first foot’ coal

OperaSydney-Fuegos2006-342289398Question 10)
Who doesn’t love a firework or two on New Years Eve?  But which element is most commonly used to produce the colour green?
a) magnesium
b) sodium
c) barium

(Answers below…)

1a) Bernhard Tollens (but his science teacher was Karl Möbius).
2b) It’s a natural anti-freeze.
3b) Silver fulminate (it always surprises me how many people guess gunpowder. That would be exciting).
4a) carbon dioxide.
5b) magnesium sulfate which, funnily enough, also causes ‘hard’ water.
6a) the Maillard reaction, although Hodge did establish the mechanism.
7c) In the cake – it’s sucrose (table sugar).
8b) it expands as it freezes and is thus less dense than liquid water (which is why ice floats). We take this for granted, but most things contract (and become more dense) as they turn from liquid to solid. You should be grateful – live probably wouldn’t have evolved without this peculiar behaviour.
9a) In the champagne – it’s ethanol (or ‘alcohol’ in everyday parlance).
10c) barium – copper produces green flames too, but barium salts are more commonly used in fireworks.

So how did you do?
Less than 4: D, for deuterium. It’s heavy hydrogen and it’s used to slow things down. Enough said.
4-6: You get a C, by which I mean carbon. Have another slice of coal.
7-8: You’ve clearly been paying attention. B for boring, I mean boron.
9-10: Au-ren’t you clever? Chemistry champion!

Happy New Year everyone! 🙂

Can you get drunk through your toes?

Can you get drunk by dunking your feet in alcohol?  A strange question you might think, but an interesting one.  I recently wrote a post responding to some rather outlandish claims made on the Jeremy Vine radio show, and one of them was that we absorb 14 kg of toxins annually through our skin into our bloodstream.  This one was so questionable that I started a quest to Ask for Evidence (a campaign run by the charity Sense About Science) on the subject.  It’s thrown up a up a number of interesting bits and pieces, and there will be more to come on this topic.

Feet being submergedBut in the meantime, absorption of chemicals through skin was on my mind as I was listening to the Ask the Naked Scientists podcast.  A question about methylated spirits came up.  In his answer, Dr Chris Smith referred to a rather brilliant piece of work by some Danish scientists.

It was published in the British Medical Journal, and here’s the title: Testing the validity of the Danish urban myth that alcohol can be absorbed through feet: open labelled self experimental study

Now if that doesn’t make you want to read on, I don’t know what will.  It would appear that along with stories of suicidal architects and families being duped on holiday, there is a popular Danish urban legend that you’ll become drunk if you submerge your feet in alcoholic drink.

So late in 2010 three researchers – you can listen to an interview with one of them here – decided to test this theory, using themselves as subjects (three isn’t a very robust sample size, but perhaps they didn’t have the resources to recruit more volunteers – vodka is expensive after all).

They abstained from alcohol for 24 hours before the test to ensure that there was none in their blood, and carefully exfoliated their feet with loofas to remove dry skin.  Their blood was monitored through a venous line and a ‘before’ blood alcohol level was recorded.

And then they submerged their feet in washing up bowls filled with the contents of three 700 mL bottles of 37.5% alcohol vodka, for three hours.

What happened?  Sadly, very little.  Their blood alcohol levels stayed below the detection limit for the whole three hours.  They didn’t get drunk, their self-confidence didn’t suddenly improve, they didn’t become noticeably more chatty and no one had the urge to spontaneously hug anyone else (all these things were monitored).

It seems fairly conclusive that you can’t get drunk through your skin.  Now, the alcohol is vodka is ethanol, C2H5OH.  It’s quite a small molecule, and if it can’t get into your bloodstream when you submerge your feet right in it, then I think that really does call into question the likelihood that 14 kg of ‘toxins’ are sneaking past our skin’s defences every year.

The researchers, by the way, published their work in December 2010, and called it the: Percutaneous Ethanol Absorption Could Evoke Ongoing Nationwide Euphoria And Random Tender Hugs study.  Who says scientists don’t have a sense of humour?