Let’s change the way we talk about changes

It’s nearly the end of the school year here in the U.K., traditionally a time for reflecting on what’s gone before and planning ahead for the shiny, new September coming in a mere nine weeks (sorry, teachers!). With that in mind, let’s talk about something that comes up early in most chemistry syllabuses, and which bothers me a little more each time I think about it.

Chemical reactions occur when a match burns.

It’s the concept of chemical and physical changes. For those who aren’t familiar, this is the idea that changes we observe happening to matter fall into two, broad categories: chemical changes, where new substances are made, and physical changes, where no new substances are made.

Examples of chemical changes include things like burning a match, cooking an egg, or the reaction between vinegar and baking soda. Physical changes are largely changes of state, such as melting and boiling, but also include changes such as dissolving salt in water, or grinding limestone chips to powder.

So far, so good. Except… then we start to put descriptors on these things. And that’s when the trouble starts.

multiple choice exam questionThe first problem comes with the idea that “chemical changes are irreversible.” This is often taught in early secondary science as a straight-up fact, and is so pervasive that it’s even appeared in multiple choice exam questions, like the one shown here. The student, for the record, was expected to choose option C, “the change is irreversible.”

Except. Argh. I can tell you exactly why the student has opted for D, “the change is reversible,” and it’s not because they haven’t done their revision. Quite the opposite, in fact. No, it’s because this student has learned about weak acids. And in learning about acids, this student met this symbol, ⇌, which literally indicates a reversible chemical reaction.

Yes, that’s right. Not too long after teaching students that chemical reactions are not reversible, we then explicitly teach them that they are. Indeed, this idea of chemical reversibility is such a common one, such an important concept in chemistry, that we even have a symbol for it.

Now, of course, I can explain this. When we say chemical reactions are irreversible, what we mean is “generally irreversible if they’re carried out in an open system.” In other words, when the wood in that match burns out in the open, the carbon dioxide and water vapour that form will escape to the atmosphere, never to return, and it’s impossible to recover the match to its original state.

The problem is that many chemical reactions occur in closed systems, not least a lot of reactions that happen in solution. Hence, the whole acids thing, where we talk about weak acids “partially dissociating” into ions.

Then there’s that entire topic on the Haber process…

Can I be the only one to think that this is rather a lot of nuance to expect teenagers to keep in their head? It’s nothing short of confusing. Should we really be saying one thing in one part of a course, and the literal opposite in another? To be clear, this isn’t even a GCSE vs. A level thing – these ideas appear in the same syllabus.

Melting is a change of state, in this case from (solid) ice to (liquid) water.

All right, okay, let’s move along to the idea that physical changes are reversible. That’s much more straightforward, isn’t it? If I melt some ice, I can re-freeze it again? If I boil some water, I can condense it back into the same volume of liquid… well… I can if I collect all vapour. If I do it in a closed system. The opposite of the condition we imposed on the chemical reactions. Er. Anyway…

We might just about get away with this, if it weren’t for the grinding bit. If physical changes are truly readily reversible, then we ought to be able to take that powder we made from the limestone lumps and make it back into a nice single piece again, right? Right?

See, this is the problem. What this is really all about is entropy, but that’s a fairly tricky concept and one that’s not coming up until A level chemistry.

Okay. Instead of talking about reversible and irreversible, let’s talk about bond-breaking and bond-forming. That’s fine, isn’t it? In chemical changes, bonds are broken and formed (yep) and in physical changes, they aren’t.

Except….

Let’s go back to water for a moment. Water has the formula H2O. It’s made up of molecules where one oxygen atom is chemically bonded to two hydrogen atoms. When we boil water, we don’t break any of those bonds. We don’t form hydrogen and oxygen gas when we boil water; making a hot cup of tea would be a lot more exciting if we did. So we can safely say that boiling water doesn’t involve breaking any bonds, right? We-ell…

Water molecules contain covalent bonds, but the molecules are also joined by (much weaker) hydrogen bonds.

The trouble is that water contains something called hydrogen bonds. We usually do a bit of a fudge here and describe these as “intermolecular forces,” that is, forces of attraction between molecules. This isn’t inaccurate. But the clue is in the name: hydrogen bonds are quite, well, bond-y.

When water boils, hydrogen bonds are disrupted. Although the bonds in individual H2O molecules aren’t broken, the hydrogen bonds are. Which means… bonds are broken. Sort of.

But we’re probably on safe ground if we talk about the formation of new substances. Aren’t we?

Except….

What about dissolving? If I dissolve hydrogen chloride gas, HCl, in water, that’s a physical change, right? I haven’t made anything new? Or… have I? I had molecules with a covalent bond between the hydrogen and the chlorine, and now I have… er… hydrochloric acid (note, that’s a completely different link to the one I used back there), made up of H+ and Cl- ions mingled with water molecules.

So… it’s…. a chemical change? But wait. We could (I don’t recommend it) evaporate all that water away, and we’d have gaseous HCl again. It’s reversible.

Solid iodine is silvery-grey, but iodine vapour is a brilliant violet colour.

Hm. What about the signs that a chemical change is occurring? Surely we’re all right there? Fizzing: that’s a sign of a chemical change. Except… are you sure you know the difference between boiling and fizzing? It’s basically all bubbles, after all. Vapour? But, steam is a vapour, isn’t it? Although, on the other hand, water is a product of several chemical reactions. Colour changes? Check out what happens when you heat a small amount of solid, silvery-grey iodine so that it sublimes (spoiler: there’s a colour change).

Is anyone else really confused by now?

You should be. Your students almost certainly are.

There are, in short, more exceptions to every single one of these rules that there are for that “i before e” thing you learned in English (a rule, incidently, which is particularly galling for scientists who constantly have to deal with weights and heights).

Where do we go from here? I think it’s probably time we asked ourselves why we’re even teaching this concept in the first place. Really, it’s there to get students to think about the difference between changes of state and chemical reactions.

I suspect we need to worry about this rather less than we are: most children are very good at identifying changes of state. They do it instinctively. They only start getting confused about it when we teach them a lot of rules which they then try to apply. I’m pretty sure that’s not the way teaching is supposed to work.

A complicated arrangement of chemical glassware

This could definitely be simpler.

If I had my way, I’d ditch the physical and chemical change labels altogether and, instead, just talk about changes of state and chemical reactions. There is precisely one differentiator between these two, and it is: have we made any new stuff? If the answer is no, it’s a change of state. If the answer is yes, then a chemical reaction has occurred. Job done. (And yes, this would squarely define gaseous hydrogen chloride dissolving in water to form hydrochloric acid as a chemical reaction, and I have no problem at all with that.)

I say we change the way we talk about changes: chemistry has a reputation for being tricky, and this sort of confusing, contradictory thing is part of the reason why.


Like the Chronicle Flask’s Facebook page for regular updates, or follow @chronicleflask on Twitter. Content is © Kat Day 2019. You may share or link to anything here, but you must reference this site if you do. If you enjoy reading my blog, please consider buying me a coffee through Ko-fi using the button below.
Buy Me a Coffee at ko-fi.com

Buffers for bluffers

buffering

No, not that kind…

A little while ago now I wrote a post entitled Amazing Alkaline Lemons?. It’s been very popular, sort of. Well, it’s elicited an awful lot of comments anyway. Quite a few have mentioned buffers, which are jolly important things. They also seem to be somewhat misunderstood. So here we go, buffers 101:

Buffers regulate pH (remember that pH is the scale that measures how acidic, or basic, a solution is), and they’re essential in the body. Without them, your blood pH would fluctuate, and that that would be a very bad thing indeed. Outside a very narrow pH range (7.38 to 7.42, which is essentially neutral) proteins are denatured and enzymes stop working. In short, your body would quickly stop functioning in a really quite fatal way.

So what is a buffer? A buffer is actually a mixture, of a weak acid and its salt. Or, as chemists would say, its ‘conjugate base‘. (I’m deliberately avoiding the word ‘alkali’, because alkali has a specific meaning and it would be wrong to use it in this situation – I mention this because the word ‘alkalising’ has come up more than once).

The main buffer system in the blood is the bicarbonate buffering system. We need it because our blood has to transport carbon dioxide out of our bodies, and when carbon dioxide is dissolved in solution it forms an acid called carbonic acid. If this weren’t somehow controlled, our blood pH would quickly plummet and, as I’ve already mentioned, we’d die. This would obviously be something of an evolutionary dead-end.

Chemistry to the rescue! Carbonic acid (H2CO3) forms, but it also breaks apart again to form hydrogen ions (H+) and bicarbonate ions (HCO3) producing something chemists call an equilibrium (symbolised by the funny two-way arrow you can see below).

H2CO3 ⇌ H+ + HCO3

Equilibria have a way of balancing themselves out, and this is key to how buffers work. If you add some extra hydrogen ions to a buffer system the equilibrium shifts to absorb those hydrogen ions, keeping the pH constant. Likewise, if an alkali (or base) is added, it goes the other way and actually causes more hydrogen ions to be released. This is remarkably difficult to budge, unless you swamp it with a really strong acid (or base).

As a result, your blood pH stays perfectly balanced, and a good thing too. And all you need for it to work is to breathe. I recommend that if you want to stay healthy you don’t stop doing that.

There are other important buffer systems in the body. One that gets mentioned quite a lot is the phosphate buffer system. This plays a relatively minor role in controlling blood pH, but it is pretty important for your cells. This buffer is made up of dihydrogen phosphate ions and hydrogen phosphate ions. Phosphate plays an important role in bone health, not to mention your body’s ability to use energy effectively. Fortunately, unless you have some kind of fairly serious health problem your kidneys do a cracking job of controlling phosphate levels, so there’s no need to worry too much about it, beyond aiming, as we all should, for a generally healthy diet.

So there we are. Buffers are a mixture, they form naturally in the body, you don’t really need to do anything to help them along, and they quietly keep you alive. Pretty cool bit of everyday chemistry really.


Comments have now been closed on this post.

Basic Chemistry

basic

The other end of the pH scale.

When you start writing a blog it’s hard to predict what people will find most interesting. Inevitably, it’s not what you expected. For example, two of The Chronicle Flask’s most-read posts are about rhubarb and lemons. Perhaps people are more interested in fruit than I ever imagined. Or perhaps I’m getting a lot of hits from people mistakenly looking for recipes.

Or maybe it’s because both feature the ever-interesting topic of acids. In which case, I should probably write something else about acids.

So, this is a post about bases.

Just in case this spectacular bit of contrariness isn’t immediately obvious, bases – some of which are called alkalis (I’m coming to that in a minute) – are at the other end of the pH scale to acids. Acids are the things with a pH value of less than 7, and bases have pH values of more than 7. So basically (hoho), they’re the opposites of acids.

whysoblueI’m using the word base deliberately, and not just because of all the brilliant chemistry puns you can make with it. The more familiar word is probably alkali, but while all alkalis are bases, not all bases are alkalis.

Alkalis are often described as soluble bases. More precisely, alkalis are produced from the metals in group 1 (the ‘alkali’ metals) and group 2 (the ‘alkaline earth’ metals) of the periodic table. The more general term, base, applies to anything that can neutralise an acid. Chemists have another definition: a base is a proton (H+ ion) acceptor, while acids are proton donors (actually chemists have yet another definition, but the proton acceptor one is the one that gets trotted out most often).

The distinction between alkalis and bases does matter to chemists and the two types of substance usually look quite different – bases tend to come in solid lumps or powders (baking soda, for example) and alkalis are more likely to arrive as a solution in a bottle – but in terms of chemistry they both get involved in the same type of chemical reaction, which is neutralising acids.

Indigestion tablet advertWe make use of this all the time, whether we realise it or not. For example if you’re suffering from acid indigestion you probably reach for the indigestion tablets. An advertising campaign for a particular brand of these says that they “turn excess acid into water and other natural substances”. Those ‘natural substances’ are salts – presumably it was decided that the word ‘salt’ had too many negative connotations (which is probably true: how many people would pop a pill that promised to turn into salt in their tummy?) The main ingredient in the tablets in question is calcium carbonate; a base that reacts with stomach acid to produce calcium chloride. Which is definitely a salt, if not the one most people think of when they hear the word.

Tangentially, calcium chloride is also a food additive with the E number E509. It falls into the category of anti-caking agents, which is sort of funny when you think about it.

Anyhoo, that’s one place you use a base (rhyming now as well as punning, sorry). You’re actually making one yourself every time you eat, because your liver produces a substance called bile (bloggers love bile) which helpfully neutralises the acid your stomach produces. If it didn’t, your intestines would get damaged by that acid, so it’s important stuff.

Interestingly, in a lot of the older medical traditions (you know, swallow three leeches with meals, turn around three times under a full moon and bury a toad under a horseradish in a mock turtle) the body’s health depended on the balance of four ‘humors’, or vital fluids: blood, phlegm, ‘yellow bile‘ (choler), and ‘black bile‘. If you had too much of the last two, it was supposed to cause aggression and depression, and in fact the Greek names for them are the root of the words cholera and melancholia.

It’s interesting that in the 21st century many people are obsessed with ‘alkalinizing‘ the body (just check out the comments on that lemons post) when for thousands of years people have understood that too much alkali is probably a bad thing. Public understanding of science has really moved on hasn’t it?

soapBile does something else that’s really quite important in the body, it helps you to digest fats. Bases are generally really good at breaking down fats. This is another thing that’s been known for quite a while, ever since soap was first discovered about (sources vary quite considerably on this) six thousand years ago. Soap is made by a process of saponification, in which fats react with a strong base, usually sodium hydroxide (otherwise known as caustic soda, or sometimes lye). This breaks apart the fat molecules to make glycerol and carboxylate salts (they’re the soap bit). Because of this use, sodium hydroxide features in a famous, and rather gruesome scene, in the film Fight Club.

firediamondNaOH

The fire diamond for NaOH

Because bases are so good at breaking down fats they’re actually surprisingly (or not, if you’ve just watched that Fight Club clip)dangerous, especially because they’re also quite good at breaking down proteins. Your skin is mostly fat and protein, so they can do quite a bit of damage. Remember fire diamonds? The one for sodium hydroxide has a 3 in the blue box, which means that short exposure could cause ‘serious temporary’ or ‘moderate residual’ injury – yikes.

Corrosive hazard symbol

Corrosive hazard symbol

The European hazard symbol is even more alarming, featuring a hand with holes being burned through it. Of course, acids have symbols like these too, but people sort of expect acids to do this kind of stuff. Whereas they’re often (unless they’re chemists) strangely unaware of the dangers of alkalis. For example there’s the a famous, and gruesome, story of the serial killer John George Haigh, who famously dissolved the bodies of his victims in oil drums full of concentrated sulfuric acid. It worked quite well, but he was caught eventually when the police searched his workshop and found sludge containing three human gallstones and part of a denture.

Sulfuric acid is a particularly powerful acid, and is undoubtedly incredibly dangerous stuff, but sodium hydroxide is not much safer. It will cause instantaneous and serious burns, and solid sodium hydroxide gets incredibly hot if it’s added to water. In fact, the water will quickly boil if you’re not careful.

In May last year American Carmen Blandin Tarleton was in the news because she had just received a face transplant. She needed it because her estranged husband had doused her with concentrated sodium hydroxide six years previously. She had undergone fifty-five operations before she made the decision to get the transplant. The pictures are really quite horrific. I won’t reproduce one here; you can see the result of the attack if you follow the link above. Tarleton has also written a book about her experiences. She was left blind and horribly disfigured, with burns to 80% of her body. Doctors described it as “the most horrific injury a human being could suffer”. Sodium hydroxide is not nice stuff.

It’s surprisingly, shockingly, easy to buy sodium hydroxide. Because it’s used in soap-making, you can get it quite easily. It’s even available on Amazon. And of course it’s an ingredient in lots of drain cleaners available in supermarkets. When they say you should wear gloves to handle this stuff, it’s definitely not health and safety gone mad. You really should. Even I would (and I’m really bad about wearing gloves).

So spare a thought for bases. They’re just as interesting, and certainly no nicer or safer than their acidic cousins. In fact, they’re so good at breaking down fat and protein that they could arguably be more dangerous. And next time you’re cleaning out your oven, do remember to wear your gloves.