Effective elements: some great periodic tables

My all-time favourite scarf (made by Rooby Lane on Etsy from a periodic table by Science Notes)

I’m a chemist (no, really? I hear you cry) and like all chemists, I love the periodic table. Why do we love this weird grid of boxes and letters and numbers? Because it’s awesome, that’s why.

No, really, it is. Can physics or biology summarise pretty much everything important about their subject with one, single page of information? (Hint: nope.) But chemists have been able to do just that for the best part of 150 years.

The person we have to thank (mostly) for this brilliant bit of insight is one Dmitri Mendeleev. He was born in Siberia in February 1834 (there’s a bit of an issue with the exact date due to the Russian switch to the Gregorian calendar in 1918 but most sources seem to have settled on the 8th). He was the youngest of more than 10 children, but the really incredible bit about his story is that when he was just 15 years old his mother took him to Moscow, a journey of best part of 1000 miles. There were, at this time, some freshly-built stretches of railway, but make no mistake, it would’ve been a long and difficult trip.

Mendeleev’s mother wanted her youngest son to attend the University of Moscow. But when they got there, the University refused to accept him. So they moved on to the Main Pedagogical Institute in Saint Petersburg, which fortunately had more sense.

Mendeleev’s life is actually pretty colourful and makes for a great story (why is there no film??), but I won’t go into any more detail here, except to say that he gave a formal presentation on his periodic table of the elements in 1869. (Oh, and he also helped to found the first oil refinery in Russia, and did a lot of work on the technique of industrial fractional distillation, which literally no one ever seems to mention.)

So the periodic table is amazing, and if anything its creator was even more so. But what I actually want to do in this post is list some of my most favourite periodic table sites. There are few out there, and they contain a host of useful information above and beyond the standard atomic weight, atomic mass type-stuff. So, without further ado…

  • Sir Martyn Poliakoff recording for Periodic Videos

    Periodic Videos – produced by Nottingham University, this has a video for each element in the periodic table, including the newest ones. The videos all feature the gloriously-haired Sir Martyn Poliakoff and are great fun to watch.

  • Science Notes periodic tables – if you ever need a high-resolution periodic table, fancy making your laptop background into a periodic table (surprisingly handy, actually), or just want to refer to their simple-but-effective interactive version, this is a great place to start (my scarf, pictured above, was made from a print of Science Notes’ 118 Element Periodic Table Poster with Hubble Stars and Nebula). 
  • The Royal Society of Chemistry’s Periodic Table – particularly useful for students, as you can mouseover each element and key information such as electronic configuration appears in a little box on the same page – no clicking required. It’s really fast and easy to use. And if you do click on an element, a host of extra information appears above and beyond the usual history and uses, such as links to podcasts, videos and information about supply risk.
  • MPSE: Merck’s Periodic Table of the Elements – if you want a periodic table app for your mobile device, this is a great one. It’s quick to load to beautiful to look at. Available for Apple and Android devices.
  • Nature Chemistry: In Your Element – a periodic table of interesting and insightful essays (and I’m not just saying this because I wrote one of them) about the different elements.The most recent piece is on vanadium.
  • The Periodic Table of Tech – this one is particularly focused on what the elements are used for. You might learn, for example, that californium isotopes are used to detect landmines, or that zirconium isn’t just good for making cubic zirconia gems; it’s also used in nuclear fuel rods. What I particularly like about this is that it has all the information on one page, so it’s particularly easy to browse.

There will be many others which I haven’t mentioned. If you have a different favourite, do comment below!


Like the Chronicle Flask’s Facebook page for regular updates, or follow @chronicleflask on Twitter. All content is © Kat Day 2017. You may share or link to anything here, including the images, but you must reference this site if you do.


All comments are moderated. Abusive comments will be deleted, as will any comments referring to posts on this site which have had comments disabled.

Advertisements

The Chronicles of the Chronicle Flask: 2016

2016 is limping to its painful conclusion, still tossing out last-minute nasty surprises like upturned thumb tacks in the last few metres of a marathon. But the year hasn’t been ALL bad. Some fun, and certainly interesting, things happened too. No, really, they did, honestly.

So with that in mind, let’s have a look back at 2016 for the Chronicle Flask….

January kicked off with a particularly egregious news headline in a well-known broadsheet newspaper: Sugar found in ketchup and Coke linked to breast cancer. Turns out that the sugar in question was fructose. Yes, the sugar that’s in practically everything, and certainly everything that’s come from a plant. So why did the newspaper in question choose ketchup and Coke for their headline instead of, oh, say, fruit juice or honey? Surely not just in an effort to sell a few more newspapers after the overindulgent New Year celebrations. Surely.

octarineThere was something more lighthearted to follow when IUPAC  verified the discoveries of elements 113, 115, 117 and 118. This kicked off lots of speculation about the elements’ eventual names, and the Chronicle Flask suggested that one of them should be named Octarine in honour of the late Sir Terry Pratchett. Amazingly, this suggestion really caught everyone’s imagination. It was picked up in the national press, and the associated petition got over 51 thousand signatures!

In February I wrote a post about the science of statues, following the news that a statue to commemorate Sir Terry Pratchett and his work had been approved by Salisbury City Council. Did you know that there was science in statues? Well there is, lots. Fun fact: the God of metalworking was called Hephaestus, and the Greeks placed dwarf-like statues of him near their Hearths – could this be where the fantasy trope of dwarves as blacksmiths originates?

MCl and MI are common preservatives in cosmetic products

MCl and MI are common preservatives in cosmetic products

My skeptical side returned with a vengeance in March after I read some online reviews criticising a particular shampoo for containing a substance known as methylchloroisothiazolinone. So should you be scared of your shampoo? In short, no. Not unless you have a known allergy or particularly sensitive skin. Otherwise, feel free to the pick your shampoo based on the nicest bottle, the best smell, or the forlorn hope that it will actually thicken/straighten/brighten your hair as promised, even though they never, ever, ever do.

Nature Chemistry published Another Four Bricks in the Wall in April – a piece all about the potential names of new elements, partly written by yours truly. The month also brought a sinus infection. I made the most of this opportunity by writing about the cold cure that’s 5000 years old. See how I suffer for my lovely readers? You’re welcome.

In May I weighed in on all the nonsense out there about glyphosate (and, consequently, learned how to spell and pronounce glyphosate – turns out I’d been getting it wrong for ages). Is it dangerous? Nope, not really. The evidence suggests it’s pretty harmless and certainly a lot safer than most of its alternatives.

may-facebook-postSomething else happened in May: the Chronicle Flask’s Facebook page received this message in which one of my followers told me that my post on apricot kernels had deterred his mother from consuming them. This sort of thing makes it all worthwhile.

In June the names of the new elements were announced. Sadly, but not really very surprisingly, octarine was not among them. But element 118 was named oganesson and given the symbol Og. Now, officially, this was in recognition of the work of Professor Yuri Oganessian, but I for one couldn’t help but see a different reference. Mere coincidence? Surely not.

July brought another return to skepticism. This time, baby wipes, and in particular a brand that promise to be “chemical-free”. They’re not chemical-free. Nothing is chemical-free. This is a ridiculous label which shouldn’t be allowed (and yet, inexplicably, is still in use). It’s all made worse by the fact that Water Wipes contain a ‘natural preservative’ called grapefruit seed extract which, experiments have shown, only actually acts as a preservative when it’s contaminated with synthetic substances. Yep. Turns out some of Water Wipes claims are as stinky as the stuff they’re designed to clean up.

Maria Lenk Aquatic Enter, Tuesday, Aug. 9, 2016. (AP Photo/Matt Dunham)

Maria Lenk Aquatic Enter, Tuesday, Aug. 9, 2016. (AP Photo/Matt Dunham)

August brought the Olympics, and speculation was rife about what, exactly, was causing the swimming pools to turn such strange shades of green. Of course, the Chronicle Flask knew the correct solution…

August also saw MMS and CD reared their ugly heads on social media again. CD (chlorine dioxide) is, lest we forget, a type of bleach solution which certain individuals believe autistic children should be made to drink to ‘cure’ them. Worse, they believe such children should be forced to undergo daily enemas using CD solutions. I wrote a summary page on MMS (master mineral solution) and CD, as straight-up science companion to the commentary piece I wrote in 2015.

mugsSeptember took us back to pesticides, but this time with a more lighthearted feel. Did you know that 99.99% of all the pesticides you consume are naturally-occurring? Well, you do if you regularly read this blog. The Chronicle Flask, along with MugWow, also produced a lovely mug. It’s still for sale here, if you need a late Christmas present… (and if you use the code flask15 you’ll even get a discount!)

In October, fed up with endless arguments about the definition of the word ‘chemical’ I decided to settle the matter once and for all. Kind of. And following that theme I also wrote 8 Things Everyone Gets Wong About ‘Scary’ Chemicals for WhatCulture Science.

Just in case that wasn’t enough, I also wrote a chapter of a book on the missing science of superheroes in October. Hopefully we should see it in print in 2017.

Sparklers are most dangerous once they've gone out.

Sparklers are most dangerous once they’ve gone out.

I decided to mark Fireworks Night in November by writing about glow sticks and sparklers. Which is riskier? The question may not be as straightforward as you’d imagine. This was followed by another WhatCulture Science piece, featuring some genuinely frightening substances: 10 Chemicals You Really Should Be Scared Of.

And that brings us to December, and this little summary. I hope you’ve enjoyed the blog this year – do tell your friends about it! Remember to follow @ChronicleFlask on Twitter and like fb.com/chronicleflask on Facebook – both get updated more or less daily.

Here’s wishing all my lovely readers a very Happy New Year – enjoy a drop of bubbly ethanol solution and be careful with the Armstrong’s mixture…. 

See you on the other side!

new-year-1898553_960_720

What IS a chemical?

a_chemistry_teacher_explaining_an_experiment_8d41253v

You at the back there! Get your nose out of that dictionary and pay attention!

What do we mean when we use the word “chemical”? It seems like a simple enough question, but is it, really? I write about chemicals all the time – in fact my last WhatCulture article was about just that – and I’ve mentioned lots of different definitions before. But I’ll be honest, some of them have bothered me.

I don’t often like the definitions you find in dictionaries. Lexicography and chemistry don’t seem to be common bedfellows, and dictionary compilers haven’t, generally speaking, spent their formative years being incessantly nagged by weary chemistry teachers about their choice of vocabulary.

For example, in the Cambridge Dictionary we find:
any basic substance that is used in or produced by a reaction involving changes to atoms or molecules.”

Hm. Firstly, “basic” has a specific meaning in chemistry. Obviously the definition doesn’t mean to imply that acids aren’t chemicals, but it sort of accidentally does. Then there’s the implication that a chemical reaction has to be involved. So inert substances aren’t chemicals? Admittedly, “used in” doesn’t necessarily imply reacts – it could be some sort of inert solvent, say – but, again, it’s bothersome. Finally, “atoms or molecules”. Ionic substances not chemicals either, then?

Yes, it’s picky, but chemists are picky. Be glad that we are. A misplaced word, or even letter, on a label could have serious consequences. Trust me, you do not want to mix up the methanol with the ethanol if you’re planning cocktails. Similarly, fluorine is a whole other kettle of piranhas compared to fluoride ions. This stuff, excuse the pun, matters.

Dictionary definitions have their problems.

Dictionary definitions have their problems.

Let’s look at some more definitions (of the word as a noun):

The Free Dictionary tells us that a chemical is:
“A substance with a distinct molecular composition that is produced by or used in a chemical process.”

Merriam Webster says:
“of, relating to, used in, or produced by chemistry or the phenomena of chemistry <chemical reactions>”

And Dictionary.com goes with the simple:
“a substance produced by or used in a chemical process.”

That idea that a chemical reaction must be involved somehow seems to be pervasive. It’s understandable, since that’s the way the word is mostly used, but it’s not really right. Helium, after all, is still very much a chemical, despite being stubbornly unreactive.

Possibly the best of the bunch is found in the Oxford Living Dictionary:
“A distinct compound or substance, especially one which has been artificially prepared or purified.”

Not bad. Well done Oxford. No mention of chemical reactions here – it’s just a substance. We do most often think of chemicals as things which have been “prepared” somehow. Which is fair enough, although it can lead to trouble. In particular, ridiculous references to “chemical-free” which actually mean “this alternative stuff is naturally-occurring.” (Except of course it often isn’t: see this article about baby wipes.) The implication, of course, is that thing in question is safe(r), but there are lots and lots of very nasty chemicals in nature: natural does not mean safe.

You keep using that word. I do not think it means what you think it means.

Sometimes people will go the other way and say “everything is chemicals.” We know what this means, but it has its problems, too. Light isn’t a chemical. Sound isn’t a chemical. All right, those are forms of energy. What about neutrinos, then? Or a single proton? Or a single atom? Or, going the other way, some complicated bit of living (or once living) material? In one debate about this someone suggested to me that a “chemical was anything you could put in a jar,” at which point I pedantically said, “I keep coffee in a jar. Is that a chemical?” Obviously there are chemicals in coffee, it works from the “everything is chemicals” perspective, but it’s a single substance that’s not a chemical.

Language is annoying. This is why chemists like symbols and numbers so much.

Anyway, what have we learned? Firstly, something doesn’t necessarily have to be part of a chemical reaction to be a chemical. Secondly, we need to include the idea that it’s something with a defined composition (rather than a complex, variable mixture, like coffee), thirdly that chemical implies matter – light, sound etc don’t count, and fourthly that it also implies a certain quantity of stuff (we probably wouldn’t think of a single atom as a chemical, but collect a bunch together into a sample of gas and we probably would).

So with all that in mind, I think I shall go with:

So what IS a chemical?

A chemical is…

(Drum roll please….)

Any substance made of atoms, molecules and/or ions which has a fixed composition.

I’m not entirely convinced this is perfect, but I think it more or less works.

If you have a better idea, please do comment and let me know!


Like the Chronicle Flask’s Facebook page for regular updates, or follow @chronicleflask on Twitter. In need of a groovy new mug? Check out this page.


All comments are moderated. Abusive comments will be deleted, as will any comments referring to posts on this site which have had comments disabled.

 

No element octarine, but Nanny will be pleased…

After lots of speculation over the last few months, the names of the new elements were finally announced by IUPAC yesterday. There will now be a five-month public review, ending on 8 November 2016, but it looks likely that these names will be accepted. They are:

  • 113: Nihonium, Nh, from ‘Nihon’, meaning Japan or ‘The Land of the Rising Sun’, home of RIKEN;
  • 115: Moscovium, Mc, in recognition of the Moscow region, where JINR is based;
  • 117: Tennessine, Ts, for the Tennessee region, home of ORNL;
  • and 118: Oganesson, Og, named after a very important individual*.
New-Element-Names-768x378

New Element Names, by Compound Interest (click image for more info)

As you can see, octarine sadly didn’t make the cut. Perhaps the million to one chance rule just doesn’t work so well on roundworld. Oh well.

But look, they didn’t completely forget about us! They just misspelled ‘Ogg and Son’. It’s easily done. I’m sure Nanny will still be pleased.

nanny_ogg_by_hyaroo-d6mnot6

Nanny Ogg. Image byHyaroo, http://hyaroo.deviantart.com/

*Oganesson actually recognises Professor Yuri Oganessian (born 1933) for his pioneering contributions to transactinoid elements research. But perhaps he’s a distant relative?


Follow The Chronicle Flask on Facebook and Twitter for regular updates and other interesting bits and pieces from around the internet.

Feet of clay? The science of statues

Concept art for the Terry Pratchett statue (c) Paul Kidby

Concept art for the Terry Pratchett statue (c) Paul Kidby

Yesterday we received the exciting news that a statue to commemorate Sir Terry Pratchett and his work has been approved by Salisbury City Council. Hurrah! So, even if we don’t quite manage to get octarine into the periodic table (and thus into every science textbook for ever more), it’s looking very likely that there will still be something permanent to help keep his memory alive.

But this got me thinking about everyday chemistry (who am I kidding, I’m always thinking about everyday chemistry!) and, in particular, bronze – the material from which the statue will be made.

Bronze, I hear you say, what’s that good for apart from, well, statues? And maybe bells? Is it really that interesting?

Well, let’s see. Bronze is an alloy. Alloys are mixtures that contain at least one metal, but they’re stranger than the word ‘mixture’ might perhaps suggest. Imagine combining, say, sand and stones. You still be able to see the sand. You could see the stones. You could, if you could be bothered to do it, separate them out again. And you’d expect the mixture to behave like, well, stony sand.

Alloys aren’t like this. Alloys (other well-known examples include steel, brass and that silver-coloured stuff dentists use for filling teeth) look, on all but the atomic level, like pure metals. They’re bendy and shiny, they make pleasing ringing sounds when you hit them and they’re good electrical conductors. And unlike more simple mixtures, they’re difficult (though not impossible) to separate back into their constituents.

Perhaps the most interesting this about alloys is that their properties are often very different to any of the elements that went into making them. Bronze, in particular, is harder than either tin or copper, and hence The Bronze Age is so historically significant. Copper is one of the few metals that can (just about) be found in its pure form, and so is one of the oldest elements we know, going back at least as far as 9000 BC. But while quite pretty to look at, copper isn’t ideal for making tools, being fairly soft and not great at keeping an edge. Bronze, on the other hand, is much more durable, and was therefore a much better choice for for building materials, armour and, of course, weapons. (War, what is it good for? Er, the development of new materials?)

Hephaestus was the God of fire and metalworking; according to legend he was lame.

Hephaestus was the God of metalworking. According to legend he was lame, could it have been because of exposure to arsenic fumes?

Today we (well, chemists anyway) think of bronze as being an alloy of tin and copper, but the earliest bronzes were made with arsenic, copper ores often being naturally contaminated with this element. Arsenical bronzes can be work-hardened, and the arsenic could, if the quantities were right, also produce a pleasing a silvery sheen on the finished object. Unfortunately, arsenic vaporises at below the melting point of bronze, producing poisonous fumes which attacked eyes, lungs and skin. We know now that it also causes peripheral neuropathy, which might be behind the historical legends of lame smiths, for example Hephaestus, the Greek God of smiths. Interestingly, the Greeks frequently placed small dwarf-like statues of Hephaestus near their hearths, and this is might be where the idea of dwarves as blacksmiths and metalworkers originates.

Tin bronze required a little more know-how (not to mention trade negotiations) than arsenical bronze, since tin very rarely turns up mixed with copper in nature. But it had several advantages. The tin fumes weren’t toxic and, if you knew what you were doing, the alloying process could be more easily controlled. The resulting alloy was also stronger and easier to cast.

teaspoon in mugOf course, as we all know, bronze ultimately gave way to iron. Bronze is actually harder than wrought iron, but iron was considerably easier to find and simpler to process into useful metal. Steel, which came later, ultimately combined superior strength with a relatively lower cost and, in the early 20th century, corrosion resistance. And that’s why the teaspoon sitting in my mug is made of stainless steel and not some other metal.

Bronze has a relatively limited number of uses today, being a heavy and expensive metal, but it is still used to make statues, where heaviness and costliness aren’t necessarily bad things (unless, of course, someone pinches the statue and melts it down – an unfortunately common occurrence with ancient works). It has the advantages of being ductile and extremely corrosion resistant; ideal for something that’s going to sit outside in all weathers. A little black copper oxide will form on its surface over time, and eventually green copper carbonate, but this is superficial and it’s a really long time before any fine details are lost. In addition, bronze’s hardness and ductility means that any pointy bits probably won’t snap off under the weight of the two-millionth pigeon.

So how are bronze statues made? For this I asked Paul Kidby, who designed the concept art for the statue. He told me that he sculpts in Chavant, which is an oil-based clay. It’s lighter than normal clay and, crucially, resists shrinking and cracking. He then sends his finished work away to be cast in bronze at a UK foundry, where they make a mould of his statue and from that, ultimately (skipping over multiple steps), a bronze copy. Bronze has another nifty property, in that it expands slightly just before it sets. This means it fills the finest details of moulds which produces a very precise finish. Conveniently, the metal shrinks again as it cools, making the mould easy to remove.

And just for completeness, Paul also told me that the base of the statue will most likely be polished granite, water jet cut with the design of the Discworld sitting on the back of Great A’Tuin. I can just imagine it – it’s going to be beautiful.

Follow The Chronicle Flask on Facebook and Twitter for regular updates.

Name element 117 Octarine, in honour of Terry Pratchett’s Discworld

Sign the petition to name element 117 Octarine

UPDATE: Nature Chemistry have recently released a list of odds for the suggested new element names. Octarine is 1,000,000:1. And since, as we know: “Magicians have calculated that million-to-one chances crop up nine times out of ten,” that makes it practically a dead cert!

octarine

Octarine can famously only be seen by wizards (and witches) and cats and perhaps, now, some scientists. (Image: Discworld.com)

As you will have heard, the periodic table’s seventh row has finally been filled as four new elements have been added. Atomic numbers 115, 117 and 118 have been credited to the Joint Institute for Nuclear Research in Dubna and the Lawrence Livermore National Laboratory in California. Element 113 has been credited to a team of scientists from the Riken institute in Japan.

Period 7 is finally filled (image credit, IUPAC)

Period 7 is finally filled (image credit: IUPAC)

These elements were discovered a little while ago, but the International Union of Pure and Applied Chemistry (IUPAC) – who’s in charge of such things – have only recently verified these discoveries and asked the scientists responsible to suggest names to replace their existing temporary names of ununtrium, ununpentium, ununseptium and ununoctium.

IUPAC does have rules about naming. Namely: “Elements can be named after a mythological concept, a mineral, a place or country, a property or a scientist.”

Now, mythological concept… that might be a bit flexible, mightn’t it? What’s the definition of mythology? Well, according to dictionary.com, it’s: “a body of myths, as that of a particular people or that relating to a particular person.” And the definition of myth is “a traditional or legendary story, usually concerning some being or hero or event, with or without a determinable basis of fact or a natural explanation, especially one that is concerned with deities or demigods and explains some practice, rite, or phenomenon of nature.

I can work with that!

Terry Pratchett Terry Pratchett at home near Salisbury, Wiltshire, Britain - 04 Jun 2008

The late Sir Terry Pratchett at home near Salisbury, Wiltshire, Britain – 04 Jun 2008
(Image Credit: Photo by Adrian Sherratt/REX, (770612f), via theguardian.com)

So I propose that element 117, falling as it does in group 17 (the halogens), be named octarine, in honour of the late, great, Terry Pratchett and his phenomenally successful Discworld books. I’m also proposing the symbol Oc (pronounced, of course, as ‘ook’*).

As a halogen, 117 ought to have an ‘ine’ ending, so octarine makes perfect sense. Over 70 million Pratchett books have been sold worldwide, in 37 different languages, and lots of them concern heroes, gods and monsters. Ok, they’re not quite as old as the Greek myths, but they will be one day, right? Time is relative and all that.

Octarine, in the Discworld books, is known as ‘the colour of magic’, which also forms the title of Pratchett’s first ever Discworld book. According to Disc mythology (see, mythology), octarine is visible only to wizards and cats, and is generally described as a sort of greenish-yellow purple colour. Something that’s difficult to find and hard to observe; what could be more perfect?

So pop along and sign my petition. Maybe the Russian and American scientists are Discworld fans? You never know. If nothing else I’m absolutely certain that Sir Terry, the author of the Science of the Discworld series of books, would have a little chuckle at the idea.

“It is well known that a vital ingredient of success is not knowing that what you’re attempting can’t be done” — Terry Pratchett

* with thanks to Tom Willoughby for the pronunciation suggestion).

EDIT:

Since I started this, one or two devoted Discworld fans have commented that I should have suggested that element 118 be named octiron instead. This is because in Discworld the number 8 has special significance, and also because octiron is the metal which is the source of magical energy, and hence leads to octarine, which is just the colour of magic.

But I’m sticking with 117 and octarine. The greenish-yellow purple description seems perfect for a new halogen, and the ‘ine’ ending is just right for group 17. Although octiron also has the right ending for group 18 (‘on’), it doesn’t quite fit since it’s a metal and group 18 is technically made up of noble gases (admittedly, when you’ve only got a couple of atoms of a thing, metal vs. noble gas might be a bit irrelevant). Plus, the fact that octarine is ‘the colour of magic’ makes it seem like a more fitting tribute, this being, as I mentioned above, the title of Terry Pratchett’s first ever Discworld book.

It’s possible I’ve spent a little too long thinking about this…

Follow The Chronicle Flask on Facebook for regular updates.

The 2015 Chronicle Flask Christmas Quiz!

Christmas preparations are well underway by now, but have you been paying attention to your chemistry? Of course you have! Well, let’s see… (answers at the bottom, this is a low-tech quiz).

  1. Let’s start with an easy one. In the nativity, the three wise men allegedly turned up at the stable with three pressies for little Jesus. But which chemical symbol could represent one of the gifts?
    a) Ag
    b) Au
    c) Al
    wisemen
  2. On the topic of chemical symbols, which christmassy word can you make out of these elements?
    carbon, radium, carbon (again), potassium, erbium, sulfur

    PT

  3. It doesn’t look like snow is very likely in most of England this year, but we can dream. And while we’re dreaming: why do snowflakes always have six sides?
    a) because water has three atoms and they join up to make six.
    b) it’s usually something do with hydrogen bonding.
    c) they don’t, it’s a myth.

    snowflakes_PNG7535

  4. Where would you be most likely to find this molecule at Christmas?
    a) In the Christmas cookies.
    b) In the festive stilton.
    c) In the Christmas turkey.
    cinnamaldehyde
  5. Mmm Christmas cookies! But which other chemical substance is often added to cakes and biscuits to help them rise?
    a) sodium carbonate.
    b) sodium hydrogen carbonate.
    b) calcium carbonate.

    christmas-cookies-wallpapers-hd-desktop-wallpaper-christmas-cookie-desktopchristmas-cookies-clip-easy-sugar-tree-cute-ideas-very-best-candy-recipes-with-pictures-martha-stewart-wallpapers-hd-desktop

  6. Let’s think about the booze for a moment. Which fact is true about red wine?
    a) It tastes significantly different to white wine.
    b) Mixing it with other drinks will make your hangover worse.
    c) It’s mostly water.
    red-wine
  7. And why are beer bottles usually brown or green?
    a) Because these colours block blue light.
    b) Because in the old days beer was often a funny colour, and the coloured glass disguised it.
    c) Because it’s good luck.
    beer-bottles
  8. Where would you be most likely to find this molecule at Christmas?
    a) In the Christmas cake
    b) In the mulled wine
    c) In the wrapping paper

    Cellulose

  9. Let’s turn to New Year for a moment. What makes party poppers go pop?
    a) Gunpowder
    b) Silver fulminate
    c) Armstrong’s mixture

    Party_poppers

  10. And who doesn’t love a firework or two? So, which substance is used to produce a blue colour?
    a) Sodium bicarbonate
    b) Copper chloride
    c) Magnesium powder

    blue fireworks

ANSWERS

  1. b) Au – gold
  2. CRaCKErS!
  3. b) – hydrogen bonds form between the oxygen atom of one water molecule and the hydrogen atom of another molecule, causing the molecules to link up into hexagon shapes (pretty much any question to do with water can be answered with ‘something to do with hydrogen bonding’).
  4. a) – in the cookies, it’s cinnamaldehyde, which is the molecule that gives cinnamon it’s flavour and smell.
  5. b) – sodium hydrogen carbonate, also known as sodium bicarbonate, or just ‘bicarb’, breaks down when heated and forms carbon dioxide. It’s the formation of this gas which causes mixtures to rise.
  6. c) – the flavour and colour components of wine only make up about 2% of its volume. If we assume 12% alcohol, then the wine is 86% water. Still, probably best not to glug on a wine bottle after your morning run. On the other two points, there isn’t much evidence that mixing drinks makes hangovers worse (unless, as a result, you drink more alcohol), although some specific types of drinks may cause worse symptoms than others. As for taste, in this paper researchers describe an experiment where they gave 54 tasters white wine dyed red with food colouring. The tasters then went on to describe it as a red wine, suggesting that appearance was much more important than actual taste.
  7. a) – the coloured glass used in beer bottles is there to block blue light. These wavelengths can cause some of the substances in beer to react with each other, resulting in unpleasant flavours.
  8. c) – in the wrapping paper. It’s cellulose, the main constituent of paper.
  9. c) – It’s usually Armstrong’s mixture in party poppers, which is a highly sensitive primary explosive containing red phosphorous (eek). Did I trick any of the chemists out there? Silver fulminate is used in Christmas crackers.
  10. b) – Copper chloride, and also copper oxide and copper carbonate when combined with other things. Sodium bicarbonate produces yellow, and magnesium is white.

How many did you get right? Tell me in the comments, or pop along to The Chronicle Flask’s Facebook page and brag there. Merry Christmas!