Confusing chemical names: why do some sound so similiar?

It’s the end of March as I write this and, here in the UK at least, things are starting to feel a little bit hopeful. We’ve passed the spring equinox and the clocks have just gone forward. Arguments about the rights and wrongs of that aside, it does mean daylight late into the day, which means more opportunities to get outside in the evenings. Plus, of course, COVID-19 vaccines are rolling out, with many adults having had at least their first dose.

Some COVID-19 vaccines contain polyethylene glycol (PEG), a safe substance found in toothpaste, laxatives and other products, according to Science magazine and health expertsAh, yes. Speaking of vaccines… a couple of weeks ago I spotted a rather strange item trending on Twitter. The headline was: “Some COVID-19 vaccines contain polyethylene glycol (PEG), a safe substance found in toothpaste, laxatives and other products, according to Science magazine and health experts.”

Apart from being a bit of mouthful, this seemed like the most non-headline ever. And also, isn’t it the kind of thing that might raise suspicions in a certain mind? In a, “yeah, and why do they feel the need to tell us that, huh” sort of way?

Why on earth did it even exist?

A little bit of detective work later (by which I mean me tweeting about it and other people kindly taking the time to enlighten me) and I had my answer. The COVID-19 sceptic Alex Berenson had tweeted that the vaccine(s) contained antifreeze. Several people had immediately responded to say that, no, none of the vaccine formulations contain antifreeze. Antifreeze is ethylene glycol, which is definitely not the same thing as polyethylene glycol.

I’m not going to go much further into the vaccine ingredients thing, because actual toxicologists weighed in on that, and there’s nothing I (not a toxicologist) can really add. But this did get me thinking about chemical names, how chemists name compounds, and why some chemical names seem terrifyingly long while others seem, well, a bit silly.

A lot of the chemical names that have been around for a long time are just… names. That is, given to substances for a mixture of reasons. They do usually have something to do with the chemical makeup of the thing in question, but it might be a bit tangential.

formic acid, HCOOH, was first extracted from ants

For example, formic acid, HCOOH, takes its name from the Latin word for ant, formica, because it was first isolated by, er, distilling ant bodies (sorry, myrmecologists). On the other hand limestone, CaCO3, quicklime, CaO, and limewater, a solution of Ca(OH)2, all get their names from the old English word lim, meaning “a sticky substance,” which is also connected to the Latin limus, from which we get the modern word slime — because lime (mostly CaO) is the sticky stuff used to make building mortar.

The trouble with this sort of system, though, is that it gets out of control. The number of organic compounds listed in the American Chemical Society‘s index is in excess of 30 million. On top of which, chemists have an annoying habit of making new ones. Much as some people might think forcing budding chemists to memorise hundreds of thousands of unrelated names is a jolly good idea, it’s simply not very practical (hehe).

It’s the French chemist, Auguste Laurent, who usually gets most of the credit for deciding that organic chemistry needed a system. He was a remarkable scientist who discovered and synthesised lots of organic compounds for the first time, but it was his proposal that organic molecules be named according to their functional groups that would change things for chemistry students for many generations to come.

Auguste Laurent (image source)

Back in 1760 or so, memorising the names of substances wasn’t that much of a chore. There were half a dozen acids, a mere eleven metallic substances, and about thirty salts which were widely known and studied. There were others, of course, but still, compared to today it was a tiny number. Even if they were all named after something to do with their nature, or the discoverer, or a typical property, it wasn’t that difficult to keep on top of things.

But over the next twenty years, things… exploded. Sometimes literally, since health and safety wasn’t really a thing then, but also figuratively, in terms of the number of compounds being reported. It was horribly confusing, there were lots of synonyms, and the situation really wasn’t satisfactory. How can you replicate another scientist’s experiment if you’re not even completely sure of their starting materials?

In 1787 another French chemist, Guyton de Morveau, suggested the first general nomenclature — mostly for acids, bases and salts — with a few simple principles:

  • each substance should have a unique name, as short and specific as possible
  • the name should reflect what the substance consisted of, that is, describe its “composing parts”
  • unknown substances should be assigned names with no particular meaning, being sure not to suggest something false about the substance (if you know it’s not an acid, for example, don’t name it someinterestingname acid)
  • new names should be based on old languages, such as Latin

His ideas were accepted and adopted by most chemists at the time, although a few did attack them, claiming they were “barbarian, incomprehensible, and without etymology” (reminds me of some of the arguments I’ve had about sulfur). Still, his classification was eventually made official, after he presented it to the Académie des Sciences.

Chemists needed a naming system that would allow them to quickly identify chemical compounds.

However, by the middle of the 1800s, the number of organic compounds — that is, ones containing carbon and hydrogen — was growing very fast, and it was becoming a serious problem. Different methods were proposed to sort through the messy, and somewhat arbitrary, accumulation of names.

Enter Auguste Laurent. His idea was simple: name your substance based on the longest chain of carbon atoms it contains. As he said, “all chemical combinations derive from a hydrocarbon.” There was a bit more to it, and he had proposals for dealing with specific substances such as amines and aldehydes, and of course it was in French, but that was the fundamental idea.

It caused trouble, as good ideas so often do. Most of the other chemists of the time felt that chemical names should derive from the substance’s origins. Indeed, some of the common ones that chemistry professors are clinging onto today still do. For example, the Latin for vinegar is acetum, from which we get acetic acid. But, since organic chemistry was increasingly about making stuff, it didn’t entirely make sense to name compounds after things they might have come from, if they’d come from nature — even when they hadn’t.

So, today, we have a system that’s based on Laurent’s ideas, as well as work by Jean-Baptiste Dumas and, importantly, the concept of homology — which came from Charles Gerhardt.

Homology means putting organic compounds into “families”. For example, the simplest family is the alkanes, and the first few are named like this:

Like human families, chemical families share parts of their names and certain characteristics.

The thing to notice here is that all the family members have the same last name, or rather, their names all end with the same thing: “ane”. That’s what tells us they’re alkanes (they used to be called paraffins, but that’s a name with other meanings — see why we needed a system?).

So the end of the name tells us the family, and the first part of the name tells us about the number of carbons: something with one carbon in it starts with “meth”. Something with five starts with “pent”, and so on. We can go on and on to much bigger numbers, too. It’s a bit like naming your kids by their birth order, not that anyone would do such a thing.

There are lots of chemical families. The alcohols all end in “ol”. Carboxylic acids all end in “oic acid” and ketones end in “one” (as in bone, not the number). These endings tell us about certain groups of atoms the molecules all contain — a bit like everyone in a family having the same colour eyes, or the same shaped nose.

A chemist that’s learned the system can look at a name like this and tell you, just from the words, exactly which atoms are present, how many there are of each, and how they’re joined together. Which, when you think about it, is actually pretty awesome.

Which brings me back to the start and the confusion of glycols. Ah, you may be thinking, so ethylene glycol and polyethylene glycol are part of the same family? Their names end with the same thing, but they start differently?

Well, hah, yes and no. You remember a moment ago when I said that there are still some “common” names in use, that came from origins — for example acetic acid (properly named ethanoic acid)? Well, these substances are a bit like that. The ending “glycol” originates from “glycerine” because the first ones came from, yes, glycerine — which you get when fats are broken down.

Polyethylene glycol (PEG) is a polymer, with very different properties to ethylene glycol (image source)

Things that end in glycol are actually diols, that is, molecules which contain two -OH groups of atoms (“di” meaning two, “ol” indicating alcohol). Ethylene glycol is systematically named ethane-1,2-diol, from which a chemist would deduce that it contains two carbon atoms (“eth”) with alcohol groups (“ol”) on different carbons (1,2).

Polyethylene glycol, on the other hand, is named poly(ethylene oxide) by the International Union of Pure and Applied Chemistry (IUPAC), who get the final say on these things. The “poly” tells us it’s a polymer — that is, a very long molecule made by joining up lots and lots of smaller ones. In theory, the “ethylene oxide” bit tells us what those smaller molecules were, before they all got connected up to make some new stuff.

Okay, fine. So what’s ethylene oxide? Well, you see, that’s not quite a systematic name, either. Ethylene oxide is a triangular-shaped molecule with an oxygen atom in it, systematically named oxirane. Why poly(ethylene oxide), and not poly(oxirane), then? Mainly, as far as I can work out, to avoid confusion with epoxy resins and… look, I think we’ve gone far enough into labyrinth at this point.

The thing is, polyethylene glycol is usually made from ethylene glycol. Since everyone tends to call ethylene glycol that (and rarely, if ever, ethane-1,2-diol), it makes sense to call the polymer polyethylene glycol. Ethylene glycol makes polyethylene glycol. Simple.

Plastic bags are made from polythene, which has very different properties to the ethene that’s used to make it.

Polymers are very different to the molecules they’re made from. Of course they are, otherwise why bother? For example, ethene (also called ethylene, look, I’m sorry) is a colourless, flammable gas at room temperature. Poly(ethylene) — often just called polythene — is used to make umpteen things, including plastic bags. They’re verrrrry different. A flammable gas wouldn’t be much use for keeping the rain off your broccoli and sourdough.

Likewise, ethylene glycol is a colourless, sweet-tasting, thick liquid at room temperature. It’s an ingredient in some antifreeze products, and is, yes, toxic if swallowed — damaging to the heart, kidneys and central nervous system and potentially fatal in high enough doses. Polyethylene glycol, or PEG, on the other hand, is a solid or a liquid (depending on how many smaller molecules were joined together) that’s essentially biologically inert. It passes straight through the body, barely stopping along the way. In fact, it’s even used as a laxative.

So the headlines were accurate: PEG is “a safe substance found in toothpaste, laxatives and other products.” It is non-toxic, and describing it as “antifreeze” is utterly ridiculous.

In summary: different chemicals, in theory, have nice, logical, tell-you-everything about them names. But, a bit like humans, some of them have obscure nicknames that bear little resemblance to their “real” names. They will insist on going by those names, though, so we just need to get on with it.

The one light in this confusingly dark tunnel is the internet. In my day (croak) you had to memorise non-systematic chemical names because, unless you had a copy of the weighty rubber handbook within reach, there was no easy way to look them up. These days you can type a name into Google (apparently other search engines are available) and, in under a second, all the names that chemical has ever been called will be presented to you. And its chemical formula. And multiple other useful bits of information. It’s even possible to search by chemical structure these days. Kids don’t know they’re born, I tell you.

Anyway, don’t be scared of chemical names. They’re just names. Check what things actually are. And never, ever listen to Alex Berenson.

And get your vaccine!


If you’re studying chemistry, have you got your Pocket Chemist yet? Why not grab one? It’s a hugely useful tool, and by buying one you’ll be supporting this site – it’s win-win! If you happen to know a chemist, it would make a brilliant stocking-filler! As would a set of chemistry word magnets!

Like the Chronicle Flask’s Facebook page for regular updates, or follow @chronicleflask on Twitter. Content is © Kat Day 2021. You may share or link to anything here, but you must reference this site if you do. If you enjoy reading my blog, and especially if you’re using information you’ve found here to write a piece for which you will be paid, please consider buying me a coffee through Ko-fi using the button below.
Buy Me a Coffee at ko-fi.com

Want something non-sciency to distract you from, well, everything? Why not check out my fiction blog: the fiction phial.

 

Colour me! STEM Heroes colouring book

Someone reminded me the other day of a podcast I hosted in January 2020, in which I hoped that 2020 would bring everyone lots of good things.

Well, if nothing else, we’ve proved that I definitely don’t have prophetic abilities, eh?

But 2020 hasn’t been all unpleasantness. There have been some bright spots, and I’m about to tell you about one! Back in November the science historian and writer, Dr Kit Chapman (@ChemistryKit), tweeted:

“If I were to commission a colouring book of scientists as heroes/villains (they get to pick what they want to be shown as – superheroes, princesses, wizards etc), would you be up for being a model? Colouring book would be free for all. Just a charity thing for inspiring kids.”

Now, how cool is that idea? Kit set up a GoFundMe which raised (as I write this) over £300, and also sourced twenty different STEM “heroes” to feature in the colouring book. His goal was to ensure multiple ethnicities, gender identities and body types were represented, as well as members of the LGBTQ+ and disabled communities and scientists with mental health disorders. In other words: science is for everyone.

Kit is a science writer (a really good one, read his book) so, of course, he had to include at least one science writer in the book, luckily for me!
 My colouring page is Discworld-themed, because of course it is. It’s based on the Alchemists’ Guild, which on the Disc is… quite an exciting place. To quote a conversation between dwarf Cheery Littlebottom and Sam Vimes in the 19th Discworld book, Feet of Clay:

‘I was quite good at alchemy.’
‘Guild member?’
‘Not any more, sir.’
‘Oh? How did you leave the guild?’
‘Through the roof, sir. But I’m pretty certain I know what I did wrong.’

Like Cheery, I no longer work in a lab, but I do very much enjoy writing about horrible smells, scary acids and everyday chemistry.

You can download a full-size, high-resolution version of my colouring page from here, and you can download the entire book in one go, too — that should keep everyone busy in these slow days between Christmas and New Year!

If you do colour a page — any of them — please come and share it with me: @chronicleflask on Twitter.

I won’t say Happy New Year because, well, that didn’t work out so well last time. So, instead, let’s go with happy end of 2020!

See you all soon and remember, if you’re setting fire to a pudding, do keep it away from the curtains.


If you’re studying chemistry, have you got your Pocket Chemist yet? Why not grab one? It’s a hugely useful tool, and by buying one you’ll be supporting this site – it’s win-win! If you happen to know a chemist, it would make a brilliant stocking-filler! As would a set of chemistry word magnets!

Like the Chronicle Flask’s Facebook page for regular updates, or follow @chronicleflask on Twitter. Content is © Kat Day 2020. You may share or link to anything here, but you must reference this site if you do. If you enjoy reading my blog, and especially if you’re using information you’ve found here to write a piece for which you will be paid, please consider buying me a coffee through Ko-fi using the button below.
Buy Me a Coffee at ko-fi.com

Want something non-sciency to distract you from, well, everything? Why not check out my fiction blog: the fiction phial.

Blue skies and copper demons: a story of mysterious purple crystals

Mystery purple crystals (posted with permission of Caroline Hedge, @CM_Hedge)

Today, a little story about some mysterious, purple crystals. On Tuesday, Twitter user Caroline Hedge posted this photo with the question: “What the %#&$ is lab putting down the drain to cause this?”

The post spawned lots of responses, some more serious than others. One of the sensible ones came from Roland Roesler, who thought that the pipe had corroded from the outside, suggesting that a leaky connection at the top right had allowed sewage to drip down the right-hand side of the copper pipe and drip from the bottom, which explained why the left-hand half of the pipe appeared unscathed.

I agreed. The pipe is clearly made of copper, and blue colours are characteristic of hydrated copper salts. Inside the pipe, the flow of water would wash any solution anyway before corrosion could occur, but on the outside, drips could sit on the surface for long periods of time. There’d be plenty of time for even a slow reaction to occur, and then for water to slowly evaporate, allowing the growth of spectacular crystals.

Hydrated copper(II) sulfate crystals are bright blue. (Image from Wikimedia Commons)

But what exactly where they? There were several theories, but for me the interesting thing was the colour. Hydrated copper(II) sulfate crystals are bright blue. The colour arises due to an effect called d orbital splitting, which is a tad complicated but, in short, means that complex absorbs light from the red end of the visible light spectrum, allowing all the other colours of light to pass through. As a result, our eyes “see” blue.

But these crystals, assuming it’s not a photographic effect, had a purplish hue. At least, some of them do. So… not copper sulfate, or not entirely copper sulfate (given the situation, a mixture seemed entirely likely). Which begs the question, which copper complex produces a purple colour?

A little bit of Googling and I was pretty sure I’d identified it: copper azurite, Cu₃(CO₃)₂(OH)₂. This fit for two reasons: firstly, it’s a mineral that could (does) readily form in the presence of water and air (which, of course, contains carbon dioxide), and secondly it’s exactly the right colour.

Many will recognise the word “azure” as being associated with the deep, rich blue of a summer sky, and in fact the English name of this mineral comes from the same word-root: the Persian lazhward, a place known for its deposits of another deep-blue stone, lapis lazuli (meaning “stone of azure”).

Blue-purple copper azurite and green malachite (image from Wikipedia)

Azurite is often found with malachite, the better-known green copper mineral that we recognise from copper roofs and statues. Malachite is sometimes simplistically described as copper carbonate, implying CuCO₃, but in truth it’s Cu₂CO₃(OH)₂ pure copper(II) carbonate doesn’t form in nature.

You can see malachite co-existing with azurite in the photo on the right. The azurite will, over time, tend to morph into malachite when the level of carbon dioxide in the air is relatively low, as in ‘normal’ air—which explains why we don’t usually see purple ‘copper’ roofs—but the carbon dioxide levels were probably higher in that cupboard. There was almost certainly acidic sewage reacting with carbonate, combined with a lack of ventilation, so it makes sense that we might see more azurite.

Azurite has an interesting history as a pigment. Historically blue colours were rare and expensive—associated with royalty and divinity—which is one reason why the Virgin Mary was often depicted wearing blue in paintings. Azurite was used to make blue pigments, but (as I mentioned above) it’s unstable, tending to turn greenish over time, or black if heated. Ultramarine blue (made from lapis lazuli) is more stable, particularly when heated, but it was even more expensive. A lot of blue pigments in medieval paintings have been misidentified as coming from lapis lazuli, when in fact they were azurite—a more common mineral in Europe at the time.

There’s a fun piece of etymology here, too. Copper, of course, has been valuable metal since, well, the Bronze Age. The presence of purple azurite and green malachite are surface indicators of copper sulfide ores, useful for smelting. This lead to the name of the element nickel, because an ore of nickel weathers to produce a green mineral that looks a little like malachite. And this, in turn, lead to attempts to smelt it in the belief that it was copper ore. But, since it wasn’t, the attempts to produce copper failed (a much higher smelting temperature is needed to produce nickel).

The mineral nickeline can resemble malachite, and was dubbed kupfernickel in Germany, literally “copper demon”

As a result, the mineral, nickeline, was dubbed kupfernickel in Germany, literally “copper demon”. When the Swedish alchemist Baron Axel Fredrik Cronstedt succeeded, in 1751, in smelting kupfernickel to produce a previously unknown silvery-white, iron-like metal he named it after the nickel part of kupfernickel.

And this is how we go from a corroded pipe to sky-blue colours to medieval paintings to copper demons to nickel. But what happened to the pipe in the original tweet? Well, in an update, Caroline Hedge told us that it had been removed and disposed of, and so we’ll never be completely sure what the pretty crystals were, but they certainly lead to an interestingly twisty-turny chemistry story.


Like the Chronicle Flask’s Facebook page for regular updates, or follow @chronicleflask on Twitter. Content is © Kat Day 2020. You may share or link to anything here, but you must reference this site if you do. If you enjoy reading my blog, please consider buying me a coffee through Ko-fi using the button below.
Buy Me a Coffee at ko-fi.com

The Chronicles of the Chronicle Flask: 2019

Happy New Year, everyone! Usually, I write this post in December but somehow things have got away from me this year, and I find myself in January. Oops. It’s still early enough in the month to get away with a 2019 round-up, isn’t it? I’m sure it is.

It was a fun year, actually. I wrote several posts with International Year of the Periodic table themes, managed to highlight the tragically-overlooked Elizabeth Fulhame, squeezed in something light-hearted about the U.K.’s weird use of metric and imperial units and discovered the recipe for synthetic poo. Enjoy!

Newland’s early table of the elements

January started with a reminder that 2019 had been officially declared The Year of the Periodic Table, marking 150 years since Dmitri Mendeleev discovered the “Periodic System”. The post included a quick summary of his work, and of course mentioned the last four elements to be officially named: nihonium (113), moscovium (115), tennessine (117) and oganesson (118). Yes, despite what oh-so-many periodic tables still in widespread use suggest (sort it out in 2020, exam boards, please), period 7 is complete, all the elements have been confirmed, and they all have ‘proper’ names.

February featured a post about ruthenium. Its atomic number being not at all significant (there might be a post about rhodium in 2020 😉). Ruthenium and its compounds have lots of uses, including cancer treatments, catalysis, and exposing latent fingerprints in forensic investigations.

March‘s entry was all about a little-known female chemist called Elisabeth Fulhame. She only discovered catalysis. Hardly a significant contribution to the subject. You can’t really blame all those (cough, largely male, cough) chemists for entirely ignoring her work and giving the credit to Berzelius. Ridiculous to even suggest it.

An atom of Mendeleevium, atomic number 101

April summarised the results of the Element Tales Twitter game started by Mark Lorch, in which chemists all over Twitter tried to connect all the elements in one, long chain. It was great fun, and threw up some fascinating element facts and stories. One of my favourites was Mark telling us that when he cleared out his Grandpa’s flat he discovered half a kilogram of sodium metal as well as potassium cyanide and concentrated hydrochloric acid. Fortunately, he managed to stop his family throwing it all down the sink (phew).

May‘s post was written with the help of the lovely Kit Chapman, and was a little trot through the discoveries of five elements: carbon, zinc, helium, francium and tennessine, making the point that elements are never truly discovered by a single person, no matter what the internet (and indeed, books) might tell you.

In June I wrote about something that had been bothering me a while: the concept of describing processes as “chemical” and “physical” changes. It still bothers me. The arguments continue…

In July I came across a linden tree in a local park, and it smelled absolutely delightful. So I wrote about it. Turns out, the flowers contain one of my all-time favourite chemicals (at least in terms of smell): benzaldehyde. As always, natural substances are stuffed full of chemicals, and anyone suggesting otherwise is at best misinformed, at worst outright lying.

Britain loves inches.

In August I wrote about the UK’s unlikely system of units, explaining (for a given value of “explaining”) our weird mishmash of metric and imperial units. As I said to a confused American just the other day, the UK is not on the metric system. The UK occasionally brushes fingers with the metric system, and then immediately denies that it wants anything to do with that sort of thing, thank you very much. This was my favourite post of the year and was in no way inspired by my obsession with the TV adaptation of Good Omens (it was).

In September I returned to one of my favourite targets: quackery. This time it was amber teething necklaces. These are supposed to work (hmm) by releasing succinic acid from the amber beads into the baby’s skin where it… soothes the baby by… some unexplained mechanism. They don’t work and they’re a genuine choking hazard. Don’t waste your money.

October featured a post explaining why refilling plastic bottles might not be quite as simple as you thought. Sure, we all need to cut down on plastic use, but there are good reasons why shops have rules about what you can, and can’t, refill and they’re not to do with selling more bottles.

November continued the environmental theme with a post was all about some new research into super-slippery coatings that might be applied to all sorts of surfaces, not least ceramic toilet bowls, with the goal of saving some of the water that’s currently used to rinse and clean such surfaces. The best bit about this was that I discovered that synthetic poo is a thing, and that the recipe includes miso. Yummy.

Which brings us to… December, in which I described some simple, minimal-equipment electrolysis experiments that Louise Herbert from STEM Learning had tested out during some teaching training exercises. Got a tic tac box, some drawing pins and a 9V battery? Give it a go!

Well, there we have it. That’s 2019 done and dusted. It’s been fun! I wonder what sort of health scares will turn up for “guilty January”? Won’t be long now…


Like the Chronicle Flask’s Facebook page for regular updates, or follow @chronicleflask on Twitter. Content is © Kat Day 2020. You may share or link to anything here, but you must reference this site if you do. If you enjoy reading my blog, please consider buying me a coffee through Ko-fi using the button below.
Buy Me a Coffee at ko-fi.com

How many scientists does it take to discover five elements? More than you might think…

My last post chronicled (see what I did there?) a meandering stroll through all 118 elements in the periodic table. As I read through all the pieces of that thread, I kept wanting to find out more about some of the stories. This is the international year of the periodic table, after all — what better time to go exploring?

But, here’s the thing: 118 is a lot. It took ages even just to collect all the (mostly less than) 280-character tweets together. Elemental stories span the whole of human existence and are endlessly fascinating, but telling all of them in any kind of detail would take whole book (not a small one, either) and would be a project years in the making. So, how about instead having a look at some notable landmarks? A sort of time-lapse version of elemental history and discovery, if you will…

Carbon

The word “carbon” comes from the Latin “carbo”, meaning coal and charcoal.

Let’s begin the story with carbon: fourth most abundant element in the universe and tenth most abundant in the Earth’s crust (give or take). When the Earth first formed, about 4.54 billion years ago, volcanic activity resulted in an atmosphere that was mostly carbon dioxide. The very earliest forms of life evolved to use carbon dioxide through photosynthesis. Carbon-based compounds make up the bulk of all life on this planet today, and carbon is the second most abundant element in the human body (after oxygen).

When we talk about discovering elements, our minds often leap to “who”. But, as we’ll see throughout this journey, that’s never an entirely straightforward question. The word “carbon” comes from the Latin carbo, meaning coal and charcoal. Humans have known about charcoal for many thousands of years — after all, if you can make a fire, it’s not long before you start to wonder if you can do something with this leftover black stuff. We’ll never know who first “discovered” carbon. But we can be sure of one thing: it definitely wasn’t an 18th century European scientist.

Diamond is a form of carbon used by humans for over 6000 years.

Then there are diamonds, although of course it took people a bit longer to understand how diamonds and other forms of carbon were connected. Human use of diamonds may go back further than we imagine, too. There’s evidence that the Chinese used diamonds to grind and polish ceremonia tools as long as 6,000 years ago.

Even the question of who first identified carbon as an element isn’t entirely straightforward. In 1722, René Antoine Ferchault de Réaumur demonstrated that iron was turned into steel by absorbing some substance. In 1772, Lavoisier showed for the first time that diamonds could burn (contrary to a key plot point in a 1998 episode of Columbo).

In 1779, Scheele demonstrated that graphite wasn’t lead, but rather was a form of charcoal that formed aerial acid (today known as carbonic acid) when it was burned and the products dissolved in water. In 1786 Claude Louis Berthollet, Gaspard Monge and C. A. Vandermonde again confirmed that graphite was mostly carbon, and in 1796, Smithson Tennant showed that burning diamond turned limewater milky — the established test for carbon dioxide gas — and argued that diamond and charcoal were  chemically identical.

Even that isn’t quite the end of the story: fullerenes were discovered 1985, and Harry Kroto, Robert Curl, and Richard Smalley were awarded a Nobel Prize for: “The discovery of carbon atoms bound in the form of a ball” in 1996.

Type “who discovered carbon” into a search engine and Lavoisier generally appears, but really? He was just one of many, most of whose names we’ll never know.

Zinc

Brass, an alloy of zinc, has been used for thousands of years.

Now for the other end of the alphabet: zinc. It’s another old one, although not quite as old as carbon. Zinc’s history is inextricably linked with copper, because zinc ores have been used to make brass alloys for thousands of years. Bowls made of alloyed tin, copper and zinc have been discovered which date back to at least 9th Century BCE, and many ornaments have been discovered which are around 2,500 years old.

It’s also been used in medicine for a very long time. Zinc carbonate pills, thought to have been used to treat eye conditions, have been found on a cargo ship wrecked off the Italian coast around 140 BCE, and zinc is mentioned in Indian and Greek medical texts as early as the 1st century CE. Alchemists burned zinc in air in 13th century India and collected the white, woolly tufts that formed. They called it philosopher’s wool, or nix alba (“white snow”). Today, we know the same thing as zinc oxide.

The name zinc, or something like it, was first documented by Paracelsus in the 16th century — who called it “zincum” or “zinken” in his book, Liber Mineralium II. The name might be derived from the German zinke, meaning “tooth-like” — because crystals of tin have a jagged, tooth-like appearance. But it could also suggest “tin-like”, since the German word zinn means tin. It might even be from the Persian word سنگ, “seng”, meaning stone.

These days, zinc is often used as a coating on other metals, to prevent corrosion.

P. M. de Respour formally reported that he had extracted metallic zinc from zinc oxide in 1668, although as I mentioned above, in truth it had been extracted centuries before then. In 1738, William Champion patented a process to extract zinc from calamine (a mixture of zinc oxide and iron oxide) in a vertical retort smelter, and Anton von Swab also distilled zinc from calamine in 1742.

Despite all that, credit for discovery of zinc usually goes to Andreas Marggraf, who’s generally considered the first to recognise zinc as a metal in its own right, in 1746.

Helium

Evidence of helium was first discovered during a solar eclipse.

Ironically for an element which is (controversially) used to fill balloons, helium’s discovery is easier to pin down. In fact, we can name a specific day: August 18, 1868. The astronomer Jules Janssen was studying the chromosphere of the sun during a total solar eclipse in Guntur, India, and found a bright, yellow line with a wavelength of 587.49 nm.

In case you thought this was going to be simple, though, he didn’t recognise the significance of the line immediately, thinking it was caused by sodium. But then, later the same year, Norman Lockyer also observed a yellow line in the solar spectrum — which he concluded was caused by an element in the Sun unknown on Earth. Lockyer and Edward Frankland named the element from the Greek word for the Sun, ἥλιος (helios).

Janssen and Lockyer may have identified helium, but they didn’t find it on Earth. That discovery was first made by Luigi Palmieri, analysing volcanic material from Mount Vesuvius in 1881. And it wasn’t until 1895 that William Ramsay first isolated helium by treating the mineral cleveite (formula UO2) with acid whilst looking for argon.

Mendeleev’s early versions of the periodic table, such as this one from 1871, did not include any of the noble gases (click for image source).

Interestingly, Mendeleev’s 1869 periodic table had no noble gases as there was very little evidence for them at the time. When Ramsay discovered argon, Mendeleev assumed it wasn’t an element because of its unreactivity, and it was several years before he was convinced that any of what we now call the noble gases should be included. As a result, helium didn’t appear in the periodic table until 1902.

Who shall we say discovered helium? The astronomers, who first identified it in our sun? Or the chemists, who managed to collect actual samples on Earth? Is an element truly “discovered” if you can’t prove you had actual atoms of it — even for a brief moment?

Francium

So far you may have noticed that all of these discoveries have been male dominated. This is almost certainly not because women were never involved in science, as there are plenty of records suggesting that women often worked in laboratories in various capacities — it’s just that their male counterparts usually reported the work. As a result the men got the fame, while the women’s stories were, a lot of the time, lost.

Marguerite Perey discovered francium (click for image source).

Of course, the name that jumps to mind at this point is Marie Curie, who famously discovered polonium and radium and had a third element, curium, named in honour of her and her husband’s work. But she’s famous enough. Let’s instead head over to the far left of the periodic table and have a look at francium.

Mendeleev predicted there ought to be an element here, following the trend of the alkali metals. He gave it the placeholder name of eka-caesium, but its existence wasn’t to be confirmed for some seventy years. A number of scientists claimed to have found it, but its discovery is formally recorded as having been made in January 1939 by Marguerite Perey. After all the previous failures, Perey was incredibly meticulous and thorough, carefully eliminating all possibility that the unknown element might be thorium, radium, lead, bismuth, or thallium.

Perey temporarily named the new alkali metal actinium-K (since it’s the result of alpha decay of 227Ac), and proposed the official name of catium (with the symbol Cm), since she believed it to be the most electropositive cation of the elements.

But the symbol Cm was assigned to curium, and Irène Joliot-Curie, one of Perey’s supervisors, argued against the name “catium”, feeling it suggested the element was something to do with cats. Perey then suggested francium, after her home country of France, and this was officially adopted in 1949.

A sample of uraninite containing perhaps 100,000 atoms of francium-223 (click for image source).

Francium was the last element to be discovered in nature. Trace amounts occur in uranium minerals, but it’s incredibly scarce. Its most stable isotope has a half life of just 22 minutes, and bulk francium has never been observed. Famously, there’s at most 30 g of francium in the Earth’s crust at any one time.

Of all the elements I’ve mentioned, this is perhaps the most clear-cut case. Perey deservedly takes the credit for discovering francium. But even then, she wouldn’t have been able to prove so conclusively that the element she found wasn’t something else had it not been for all the false starts that came before. And then there are all the other isotopes of francium, isolated by a myriad of scientists in the subsequent years…

Tennessine

All of which brings us to one of the last elements to be discovered: tennessine (which I jokingly suggested ought to be named octarine back in 2016). As I mentioned above, francium was the last element to be discovered in nature: tessessine doesn’t exist on Earth. It has only ever been created in a laboratory, by firing a calcium beam into a target made of berkelium (Bk) and smashing the two elements together in a process called nuclear fusion.

Element 117, tennessine, was named after Tennessee in the USA.

Like tennessine, berkelium isn’t available on Earth and had to be made in a nuclear reactor at Oak Ridge National Laboratory (ORNL) in Tennessee — the reason for the new element’s name. One of the scientists involved, Clarice E. Phelps, is believed to be the first African American to discover a chemical element in recent history, having worked on the purification of the 249Bk before it was shipped to Russia and used to help discover element 117.

Tennessine’s discovery was officially announced in Dubna in 2010 — the result of a Russian-American collaboration — and the name tennessine was officially adopted in November 2016.

Who discovered it? Well, the lead name on the paper published in Physical Review Letters is Yuri Oganessian (for whom element 118 was named), but have a look at that paper and you’ll see there’s a list of over 30 names, and that doesn’t even include all the other people who worked in the laboratories, making contributions as part of their daily work.

From five to many…

There’s a story behind every element, and it’s almost always one with a varied cast of characters.

As I said at the start, when we talk about discovering elements, our minds often leap to “who” — but they probably shouldn’t. Scientists really can’t work entirely alone: collaboration and communication are vital aspects of science, because without them everyone would have to start from scratch all the time, and humans would never have got beyond “fire, hot”. As Isaac Newton famously said in a letter in 1675: “If I have seen further it is by standing on the shoulders of giants.”

There’s a story behind every element, and it’s almost always one with a varied cast of characters.


This post was written by with the help of Kit Chapman (so, yes: it’s by Kit and Kat!). Kit’s new book, ‘Superheavy: Making and Breaking the Periodic Table‘, will be published by Bloomsbury Sigma on 13th June.


Like the Chronicle Flask’s Facebook page for regular updates, or follow @chronicleflask on Twitter. Content is © Kat Day 2019. You may share or link to anything here, but you must reference this site if you do. If you enjoy reading my blog, please consider buying me a coffee through Ko-fi using the button below.
Buy Me a Coffee at ko-fi.com

 

 

Let’s speed up the rate at which we recognise our female chemists

A little while back now I was researching my post on water when I came across a scientist which I hadn’t heard of before. And that was odd, because this person was one of the first to propose the idea of catalysis, which is a pretty important concept in chemistry, in fact, in science in general. Surely the name should be at least a bit familiar. Shouldn’t it?

And yet it wasn’t, and the more I read, the more surprised I was. Not only was this person clearly a brilliant thinker, they were also remarkably prescient.

Elizabeth Fulhame’s book was first published in 1794 (image by the Science History Institute, Public Domain)

So who was it? Her name was Elizabeth Fulhame, and we know very little about her, all things considered. Look her up and you won’t find any portraits, or even her exact dates of birth and death, despite the fact that her book, An Essay on
Combustion,
was published in more than one country and she, a Scottish woman, was made an honorary member of the Philadelphia Chemical Society in 1810 — remarkable achievements for the time.

As well as describing catalytic reactions for the first time, that book — first published in 1794 and surprisingly still available today — also contains a preface which includes the following:

But censure is perhaps inevitable; for some are so ignorant,
that they grow sullen and silent, and are chilled with horror
at the sight of any thing, that bears the semblance of learning,
in whatever shape it may appear; and should the spectre
appear in the shape of a woman, the pangs, which they suffer,
are truly dismal.

Obviously women are interested in physics. And also, apparently, in staring wistfully into open vacuum chambers whilst wearing unnecessary PPE (stock photos are great, aren’t they?)

Fulhame clearly did not suffer fools gladly (I think I would’ve liked her), and had also run across a number of people who felt that women were not capable of studying the sciences.

Tragically, 225 years later, this attitude still has not entirely gone away. Witness, for example, the recent article featuring an interview with Alessandro Strumia, in which he claimed that women simply don’t like physics. There were naturally a number of excellent rebuttals to this ludicrous claim, not least a brilliant annotated version of the article by Shannon Palus — which I recommend because, firstly, not behind a paywall and secondly, very funny.

Unfortunately, despite the acclaim she received at the time, Fulhame was later largely forgotten. One scientist who often gets the credit for “discovering” catalysis is Berzelius. There is no doubt that he was a remarkable chemist (you have him to thank for chemical notation, for starters), but he was a mere 15 years old when Fulhame published her book.

The RSC’s Breaking the Barriers report was published in 2018

In November last year, the Royal Society of Chemistry (RSC) launched its ‘Breaking the Barriers’ report, outlining issues surrounding women’s retention and progression in academia. As part of this project, they commissioned an interview with Professor Marina Resmini, Head of the Chemistry Department at Queen Mary University of London.

She pointed out that today there is an almost an equal gender split in students studying chemistry at undergraduate level in the United Kingdom, but admitted that there is still much to be done, saying:

“The two recent RSC reports ‘Diversity Landscape of the Chemical Sciences’ and ‘Breaking the Barriers’ have highlighted some of the key issues. Although nearly 50% of undergraduate students studying to become chemists are female, the numbers reaching positions of seniority are considerably less.”

Professor Resmini was keen to stress that there are many supportive men in academia, and that’s something we mustn’t forget. Indeed, this was true even in Fulhame’s time. Thomas P. Smith, a member of the Philadelphia Chemical Society’s organizing committee, applauded her work, saying “Mrs. Fulham has now laid such bold claims to chemistry that we can no longer deny the sex the privilege of participating in this science also.” Which may sound patronising to 21st century ears, but it was 1810 after all. Women wouldn’t even be trusted to vote for another century, let alone do tricky science.

I think I’ve found Strumia’s limousine; it’s bright red, very loud, and can only manage short distances.

Speaking of patronising comments, another thing that Strumia said in his interview was, “It is not as if they send limousines to pick up boys wanting to study physics and build walls to keep out the women.”

This is one of those statements that manages, at the same time, to be both true and also utterly absurd. Pupils, undergraduates, post-grads and post-docs do not exist in some sort of magical vacuum until, one day, they are presented with a Grand Choice to continue, or not, with their scientific career. Their decision to stop, if it comes, is influenced by a thousand, often tiny, things. Constant, subtle, nudges which oh-so-gently push them towards, or away, and which start in the earliest years of childhood. You only need to spend five minutes watching the adverts on children’s television to see that girls and boys are expected to have very different interests.

Textbooks may be studied by girls, but they rarely mention the work of female scientists.

So let’s end with another of Professor Resmini’s comments: that the work of past female scientists deserves greater recognition than it has received. This could not be more true, and this lack of representation is exactly one of those nudges I mentioned. Pick up a chemistry textbook and look for the pictures of female scientists: there might be a photo of Marie Curie, if you’re lucky. Kathleen Lonsdale usually gets a mention in the section on benzene in post-GCSE texts. But all too often, that’s about it. On the other hand, pictures of Haber, J. J. Thompson, Rutherford, Avogadro and Mendeleev are common enough that most chemistry students could pick them out of a lineup.

We should ask ourselves about the message this quietly suggests: that women simply haven’t done any “serious” chemistry (this is not the case, of course) and… perhaps never will?

Online, things have begun to shift. Dr Jess Wade has famously spent many, many hours adding the scientific contributions of women to Wikipedia, for example. It’s time things changed in print, too. Perhaps we could begin by starting the rates of reaction chapter in chemistry texts with a mention of Fulhame’s groundbreaking work.


EDIT: After I posted this, I learned that the Breaking Chemical Bias project is currently taking suggestions on the missing women scientists in the chemistry curriculum. I filled in the form for Fulhame, naturally! If this post has made you think of any other good examples, do head on over and submit their names.


Like the Chronicle Flask’s Facebook page for regular updates, or follow @chronicleflask on Twitter. Content is © Kat Day 2019. You may share or link to anything here, but you must reference this site if you do.

If you enjoy reading my blog, please consider buying me a coffee through Ko-fi using the button below.
Buy Me a Coffee at ko-fi.com

Remarkable, reticent ruthenium

Ruthenium is rare transition metal belonging to the platinum group of elements

What shall I write about this week, I wonder… how about, apropos of nothing, the element ruthenium? It is the International Year of the Periodic Table after all; there have to be some element-themed posts, right?

Ruthenium has the atomic number 44 (good number, that) and the symbol Ru. It was officially discovered by Karl Ernst Klaus in 1844 (there it is again) at Kazan State University in Russia.

You might remember from school (or possibly from your jewellery) that platinum is really unreactive. What has this got to do with ruthenium? Well, unreactive metals can be found in nature as actual metal, rather than combined with other elements in ores. But it turns out that early “platinum metal” — used by pre-Columbian Americans — wasn’t pure, but was in fact an alloy of platinum with other metals.

Gottfried Osann discovered ruthenium before Klaus, but gave up his claim.

In 1827 Jöns Berzelius and Gottfried Osann dissolved crude platinum from the Ural Mountains in aqua regia: a 1:3 mixture of nitric acid and hydrochloric acid (we’ve met aqua regia before, in a famous story about Nobel Prize medals). Osann was certain that he’d isolated three new metals, which he named pluranium, ruthenium, and polinium, but Berzelius disagreed, and this caused a long-running dispute between the two scientists.

Osann eventually gave up the argument — which was a shame, because he was right. In 1844 Karl Ernst Klaus analysed the compounds prepared by Osann and showed that they did, in fact, contain ruthenium.

Klaus had been studying the insoluble residues left over after platinum extraction from Ural placer deposits. Like many chemists at the time, he tasted and smelled the substances he prepared, and he reported that the ammines of ruthenium had a more caustic taste than alkalis, while the taste of osmium tetroxide was “acute pepper-like” (do not try this at home).

He communicated his discoveries to the Academy of Sciences at St. Petersburg and to Academician G. I. Gess, who reported them on September 13th and October 25th, 1844. Klaus named the new element from the Latin word, Ruthenia, and mentioned Osann’s work, saying:

“I named the new body, in honour of my Motherland, ruthenium. I had every right to call it by this name because Mr. Osann relinquished his ruthenium and the word does not yet exist in chemistry”

ruthenium chloride is sometimes shown as red, but it’s actually black

Klaus died of pneumonia in 1864, and the study of ruthenium in Russia more or less stopped for the best part of seventy years, not restarting until the 1930s. The element is now known to harden platinum and palladium alloys, and is used in electrical contacts as a result. When just 0.1% is added to titanium it forms an extremely corrosion-resistant alloy which is particularly useful in seawater environments.

Ruthenium and its compounds have lots of other uses, too, including cancer treatments and in catalysis. Ruthenium(VIII) oxide, a colourless liquid (just: its melting point is 25 oC) forms brown-black ruthenium dioxide in contact with fatty oils; because of this property it’s used in forensics to expose latent fingerprints.

This Swarovski necklace has been plated with ruthenium

One of the most vibrant ruthenium compounds is the dye, “ruthenium red”, which has been used as a biological stain for over 100 years. It has the complicated formula [Ru3O2(NH3)14]Cl6 and is made by reacting ruthenium trichloride with ammonia in air, which might explain why pictures of ruthenium trichloride sometimes show a red substance, when it’s actually a rather boring black.

One place where you might have come across ruthenium in everyday life is jewellery: the metal’s hardness, high corrosion resistance and unusual, not-quite-metallic grey-black finish make it popular choice. Pure ruthenium is expensive though, so it’s almost always plated onto a cheaper base metal.

And now, one last picture to mark my ruthenium-day: check out my fabulous chemistry-themed birthday cake (thanks, Mum!), made by the Cotswold Cake Room. How amazing is this?

Normally at the end of my blog posts I link to my ko-fi account, but this time, instead, if you’re feeling generous please consider donating to my birthday fundraiser to raise money for Alzheimer’s Research UK.

The fundraiser is running through Facebook, which I appreciate doesn’t suit everyone — if you’d like to donate without going via that particular social network, there’s a link to donate directly here. Do drop me a comment below if you do, so that I can say thank you x


Like the Chronicle Flask’s Facebook page for regular updates, or follow @chronicleflask on Twitter. Content is © Kat Day 2019. You may share or link to anything here, but you must reference this site if you do.

2019: The Year of the Periodic Table

The Periodic Table

2019 is the International Year of the Periodic Table

In case you missed it, 2019 is officially the International Year of the Periodic Table, marking 150 years since Dmitri Mendeleev discovered the “Periodic System”.

Well, this is a chemistry blog, so it would be pretty remiss not to say something about that, wouldn’t it? So, here’s a really quick summary of how we got to the periodic table we all know and love…

Around 400 BCE, the Greek philosopher Democritus (along with a couple of others) suggested that everything was composed of indivisible particles, which he called “atoms” (from the Greek atomos). The term ‘elements’ (stoicheia) was first used around 360 BCE by Plato, although at that time he believed matter to be made up of tiny units of fire, air, water and earth.

Skipping over a few centuries of pursuing what was, we know now, a bit of a dead-end in terms of the whole earth, air, fire and water thing, in 1661, Robert Boyle was probably the first to state that elements were the building blocks of matter and were irreducible but, and this was the crucial bit, that we didn’t know what all the elements were, or even how many there might be.

Antoine Lavoisier wrote one of the first lists of chemical elements.

Antoine Lavoisier (yep, him again) wrote one of the first lists of chemical elements, in his 1789 Elements of Chemistry. He listed 33 of them, including some that turned out not to be elements, such as light.

Things moved on pretty quickly after that. Just thirty years later, Jöns Jakob Berzelius had worked out the atomic weights for 45 of the 49 elements that were known at that point.

So it was that by the 1810s, chemists knew of 50 or so chemical elements, and had atomic weights for most of them. It was becoming clear that more elements were going to turn up, and the big question became: how do we organise this ever-increasing list? It was a tricky problem. Imagine trying to put together a jigsaw puzzle where two-thirds of the pieces are missing, there’s no picture on the box, and a few pieces have been tossed in from other puzzles for good measure.

Enter Johann Döbereiner, who in 1817 noticed that there were patterns in certain groups of elements, which he called triads. For example, he spotted that lithium, sodium and potassium behaved in similar ways, and realised that if you worked out the average atomic mass of lithium and potassium, you got a value that was close to that of sodium’s. At the time he could only find a few triads like this, but it was enough to suggest that there must be some sort of structure underlying the list of elements.

In 1826 Jean-Baptiste Dumas (why do all these chemists have first names starting with J?) perfected a method for measuring vapour densities, and worked out new atomic mass values for 30 elements. He also set the value for hydrogen at 1, in other words, placing hydrogen as the “first” element.

Newland’s table of the elements had “periods” going down and “groups” going across, but otherwise looks quite familiar.

Next up was John Newlands (another J!), who published his “Law of Octaves” in 1865. Arranging the elements in order of atomic mass, he noticed that properties seemed to be repeating in groups of eight. His rows and columns were reversed compared to what we use today — he had groups going across, and periods going down — but apart from that the arrangement he ended up with is decidedly familiar. Other chemists, though, didn’t appreciate the musical reference, and didn’t take Newlands very seriously.

Which brings us, finally, to Dmitri Mendeleev (various other spellings of his name exist, including Dmitry Mendeleyev, but Dmitri Mendeleev seems to be the most accepted one). His early life history is a movie-worthy story (I won’t go into that else we’ll be here all day, but check it out, it’s really quite amazing). When he was just 35 he made a formal presentation to the Russian Chemical Society, titled The Dependence between the Properties of the Atomic Weights of the Elements, which made a number of important points. He noted, as Newlands had already suggested, that there were repeating patterns in the elements, or periodicity, and that there did indeed seem to be connections between sequences of atomic weights and chemical properties.

Dmitri Mendeleev suggested there were many elements yet to be discovered.

Most famously, Mendeleev suggested that there were many elements yet to be discovered, and he even went so far as to predict the properties of some of them. For example, he said there would be an element with similar properties to silicon with an atomic weight of 70, which he called ekasilicon. The element was duly discovered, in 1886 by Clemens Winkler, and named germanium, in honor of Germany: Winkler’s homeland. Germanium turns out to have an atomic mass of 72.6.

Mendeleev also predicted the existence of gallium, which he named ekaaluminium, and predicted, amongst other things, that it would have an atomic weight of 68 and a density of 5.9 g/cm3. When the element was duly discovered by the French chemist Paul Emile Lecoq de Boisbaudran, he first determined its density to be 4.7 g/cm3. Mendeleev was so sure of his prediction that he wrote to Lecoq and told him to check again. It turned out that Mendeleev was right: gallium’s density is actually 5.9 g/cm3 (and its atomic weight is 69.7).

Despite constructing the one thing that every chemist over the last 150 years has spent years of their life poring over, Mendeleev was never awarded the Nobel Prize for Chemistry. He was nominated in 1906, but the story goes that Svante Arrhenius — who had a lot of influence in the Royal Swedish Academy of Sciences — held a grudge against Mendeleev because he’d been critical of Arrhenius’s dissociation theory, and argued that the periodic system had been around for far too long by 1906 to be recognised for the prize. Instead, the Academy awarded the Nobel to Henri Moissan, for his work on isolating fluorine from its compounds (no doubt impressive, not to mention dangerous, chemistry).

Henry Moseley

Henry Moseley proposed that atomic number was equal to the number of protons in the nucleus of an atom.

Mendeleev died in 1907 at the age of 72, just before the discovery of the proton and Henry Moseley’s work, in 1913, which proposed that the atomic numbers of elements should be equal to the number of positive charges (protons) they contained in their nuclei. This discovery would have pleased Mendeleev, who had already suggested, based on their properties, that some elements shouldn’t be placed in the periodic table strictly in order of atomic weight.

After which, of course, came the discovery of the neutron — which would finally clear up the whole atomic mass/atomic number thing — atomic orbital theory, and the discovery of super-heavy elements. The most recent additions to the modern periodic table were the official names, in 2016, of the final four elements of period 7: nihonium (113), moscovium (115), tennessine (117) and oganesson (118).

Which brings us up to date. For now…


Like the Chronicle Flask’s Facebook page for regular updates, or follow @chronicleflask on Twitter. Content is © Kat Day 2019. You may share or link to anything here, but you must reference this site if you do.

If you enjoy reading my blog, please consider buying me a coffee through Ko-fi using the button below.
Buy Me a Coffee at ko-fi.com

What is Water? The Element that Became a Compound

November 2018 marks the 235th anniversary of the day when Antoine Lavoisier proved water to be a compound, rather than an element.

I’m a few days late at the time of writing, but November 12th 2018 was the 235th anniversary of an important discovery. It was the day, in 1783, that Antoine Lavoisier formally declared water to be a compound, not an element.

235 years seems like an awfully long time, probably so long ago that no one knew anything very much. Practically still eye of newt, tongue of bat and leeches for everyone, right? Well, not quite. In fact, there was some nifty science and engineering going on at the time. It was the year that Jean-François Pilâtre de Rozier and François Laurent made the first untethered hot air balloon flight, for example. And chemistry was moving on swiftly: lots of elements had been isolated, including oxygen (1771, by Carl Wilhelm Scheele) and hydrogen (officially by Henry Cavendish in 1766, although others had observed it before he did).

Cavendish had reported that hydrogen produced water when it reacted with oxygen (known then as inflammable air and dephlogisticated air, respectively), and others had carried out similar experiments. However, at the time most chemists favoured phlogiston theory (hence the names) and tried to interpret and explain their results accordingly. Phlogiston theory was the idea that anything which burned contained a fire-like element called phlogiston, which was then “lost” when the substance burned and became “dephlogisticated”.

Cavendish, in particular, explained the fact that inflammable air (hydrogen) left droplets of “dew” behind when it burned in “common air” (the stuff in the room) in terms of phlogiston, by suggesting that water was present in each of the two airs before ignition.

Antoine-Laurent Lavoisier proved that water was a compound. (Line engraving by Louis Jean Desire Delaistre, after a design by Julien Leopold Boilly.)

Lavoisier was very much against phlogiston theory. He carried out experiments in closed vessels with enormous precision, going to great lengths to prove that many substances actually became heavier when they burned and not, as phlogiston theory would have it, lighter. In fact, it’s Lavoisier we have to thank for the names “hydrogen” and “oxygen”. Hydrogen is Greek for “water-former”, whilst oxygen means “acid former”.

When, in June 1783, Lavoisier found out about Cavendish’s experiment he immediately reacted oxygen with hydrogen to produce “water in a very pure state” and prove that the mass of the water which formed was equal to the combined masses of the hydrogen and oxygen he started with.

He then went on to decompose water into oxygen and hydrogen by heating a mixture of water and iron filings. The oxygen that formed combined with the iron to form iron oxide, and he collected the hydrogen gas over mercury. Thanks to his careful measurements, Lavoisier was able to demonstrate that the increased mass of the iron filings plus the mass of the collected gas was, again, equal to the mass of the water he had started with.

Water is a compound of hydrogen and oxygen, with the formula H2O.

There were still arguments, of course (there always are), but phlogiston theory was essentially doomed. Water was a compound, made of two elements, and the process of combustion was nothing more mysterious than elements combining in different ways.

As an aside, Scottish chemist Elizabeth Fulhame deserves a mention at this point. Just a few years after Lavoisier she went on to demonstrate through experiment that many oxidation reactions occur only in the presence of water, but the water is regenerated at the end of the reaction. She is credited today as the chemist who invented the concept of catalysis. (Which is a pretty important concept in chemistry, and yet her name never seems to come up…)

Anyway, proving water’s composition becomes a lot simpler when you have a ready supply of electricity. The first scientist to formally demonstrate this was William Nicholson, in 1800. He discovered that when leads from a battery are placed in water, the water breaks up to form hydrogen and oxygen bubbles, which can be collected separately at the submerged ends of the wires. This is the process we now know as electrolysis.

You can easily carry out the electrolysis of water at home.

In fact, this is a really easy (and safe, I promise!) experiment to do yourself, at home. I did it myself, using an empty TicTac box, two drawing pins, a 9V battery and a bit of baking soda (sodium hydrogencarbonate) dissolved in water – you need this because water on its own is a poor conductor.

The drawing pins are pushed through the bottom of the plastic box, the box is filled with the solution, and then it’s balanced on the terminals of the battery. I’ve used some small test tubes here to collect the gases, but you’ll be able to see the bubbles without them.

Bubbles start to appear immediately. I left mine for about an hour and a half, at which point the test tube on the negative terminal (the cathode) was completely full of gas, which produced a very satisfying squeaky pop when I placed it over a flame.

The positive electrode (the anode) ended up completely covered in what I’m pretty sure is a precipitate of iron hydroxide (the drawing pins presumably being plated steel), which meant that very little oxygen was produced after the first couple of minutes. This is why in proper electrolysis experiments inert graphite or, even better, platinum, electrodes are used. If you do that, you’ll get a 1:2 ratio by volume of oxygen to hydrogen, thus proving water’s formula (H2O) as well.

So there we have it: water is a compound, and not an element. And if you’d like to amuse everyone around the Christmas dinner table, you can prove it with a 9V battery and some drawing pins. Just don’t nick the battery out of your little brother’s favourite toy, okay? (Or, if you do, don’t tell him it was my idea.)


Like the Chronicle Flask’s Facebook page for regular updates, or follow @chronicleflask on Twitter. Content is © Kat Day 2018. You may share or link to anything here, but you must reference this site if you do.

If you enjoy reading my blog, please consider buying me a coffee through Ko-fi using the button below.
Buy Me a Coffee at ko-fi.com

A tale of chemistry, biochemistry, physics and astronomy – and shiny, silver balls

A new school term has started here, and for me this year that’s meant more chemistry experiments – hurrah!

Okay, actually round-bottomed flasks

The other day it was time for the famous Tollens’ reaction. For those that don’t know, this involves a mixture of silver nitrate, sodium hydroxide and ammonia (which has to be freshly made every time as it doesn’t keep). Combine this concoction with an aldehyde in a glass container and warm it up a bit and it forms a beautiful silver layer on the glass. Check out my lovely silver balls!

This reaction is handy for chemists because the silver mirror only appears with aldehydes and not with other, similar molecules (such as ketones). It works because aldehydes are readily oxidised or, looking at it the other way round, the silver ions (Ag+) are readily reduced by the aldehyde to form silver metal (Ag) – check out this Compound Interest graphic for a bit more detail.

But this is not just the story of an interesting little experiment for chemists. No, this is a story of chemistry, biochemistry, physics, astronomy, and artisan glass bauble producers. Ready? Let’s get started!

Bernhard Tollens (click for link to image source)

The reaction is named after Bernhard Tollens, a German chemist who was born in the mid-19th century. It’s one of those odd situations where everyone – well, everyone who’s studied A level Chemistry anyway – knows the name, but hardly anyone seems to have any idea who the person was.

Tollens went to school in Hamburg, Germany, and his science teacher was Karl Möbius. No, not the Möbius strip inventor (that was August Möbius): Karl Möbius was a zoologist and a pioneer in the field of ecology. He must have inspired the young Tollens to pursue a scientific career, because after he graduated Tollens first completed an apprenticeship at a pharmacy before going on to study chemistry at Friedrich Wöhler’s laboratory in Göttingen. If Wöhler’s name seems familiar it’s because he was the co-discoverer of  beryllium and silicon – without which the electronics I’m using to write this article probably wouldn’t exist.

After he obtained his PhD Tollens worked at a bronze factory, but it wasn’t long before he left to begin working with none other than Emil Erlenmeyer – yes, he of the Erlenmeyer flask, otherwise known as… the conical flask. (I’ve finally managed to get around to mentioning the piece of glassware from which this blog takes its name!)

It seems though that Tollens had itchy feet, as he didn’t stay with Erlenmeyer for long, either. He worked in Paris and Portugal before eventually returning to Göttingen in 1872 to work on carbohydrates, going on to discover the structures of several sugars.

Table sugar is sucrose, which doesn’t produce a silver mirror with Tollens’ reagent

As readers of this blog will know, the term “sugar” often gets horribly misused by, well, almost everyone. It’s a broad term which very generally refers to carbon-based molecules containing groups of O-H and C=O atoms. Most significant to this story are the sugars called monosaccharides and disaccharides. The two most famous monosaccharides are fructose, or “fruit sugar”, and glucose. On the other hand sucrose, or “table sugar”, is a disaccharide.

All of the monosaccharides will produce a positive result with Tollens’ reagent (even when their structures don’t appear to contain an aldehyde group – this gets a bit complicated but check out this link if you’re interested). However, sucrose does not. Which means that Tollens’ reagent is quick and easy test that can be used to distinguish between glucose and sucrose.

Laboratory Dewar flask with silver mirror surface

And it’s not just useful for identifying sugars. Tollens’ reagent, or a variant of it, can also be used to create a high-quality mirror surface. Until the 1900s, if you wanted to make a mirror you had to apply a thin foil of an alloy – called “tain” – to the back of a piece of glass. It’s difficult to get a really good finish with this method, especially if you’re trying to create a mirror on anything other than a perfectly flat surface. If you wanted a mirrored flask, say to reduce heat radiation, this was tricky. Plus it required quite a lot of silver, which was expensive and made the finished item quite heavy.

Which was why the German chemist Justus von Liebig (yep, the one behind the Liebig condenser) developed a process for depositing a thin layer of pure silver on glass in 1835. After some tweaking and refining this was perfected into a method which bears a lot of resemblance to the Tollens’ reaction: a diamminesilver(I) solution is mixed with glucose and sprayed onto the surface of the glass, where the silver ions are reduced to elemental silver. This process ticked a lot of boxes: not only did it produce a high-quality finish, but it also used such a tiny quantity of silver that it was really cheap.

And it turned out to be useful for more than just laboratory glassware. The German astronomer Carl August von Steinheil and French doctor Leon Foucault soon began to use it to make telescope mirrors: for the first time astronomers had cheap, lightweight mirrors that reflected far more light than their old mirrors had ever done.

People also noticed how pretty the effect was: German artisans began to make Christmas tree decorations by pouring silver nitrate into glass spheres, followed by ammonia and finally a glucose solution – producing beautiful silver baubles which were exported all over the world, including to Britain.

These days, silvering is done by vacuum deposition, which produces an even more perfect surface, but you just can’t beat the magic of watching the inside of a test tube or a flask turning into a beautiful, shiny mirror.

Speaking of which, according to @MaChemGuy on Twitter, this is the perfect, foolproof, silver mirror method:
° Place 5 cm³ 0.1 mol dm⁻³ AgNO₃(aq) in a test tube.
° Add concentrated NH₃ dropwise untill the precipitate dissolves. (About 3 drops.)
° Add a spatula of glucose and dissolve.
° Plunge test-tube into freshly boiled water.

Silver nitrate stains the skin – wear gloves!

One word of warning: be careful with the silver nitrate and wear gloves. Else, like me, you might end up with brown stains on your hands that are still there three days later…


Like the Chronicle Flask’s Facebook page for regular updates, or follow @chronicleflask on Twitter. All content is © Kat Day 2018. You may share or link to anything here, but you must reference this site if you do.

If you enjoy reading my blog, please consider buying me a coffee through Ko-fi using the button below.
Buy Me a Coffee at ko-fi.com