Blue skies and copper demons: a story of mysterious purple crystals

Mystery purple crystals (posted with permission of Caroline Hedge, @CM_Hedge)

Today, a little story about some mysterious, purple crystals. On Tuesday, Twitter user Caroline Hedge posted this photo with the question: “What the %#&$ is lab putting down the drain to cause this?”

The post spawned lots of responses, some more serious than others. One of the sensible ones came from Roland Roesler, who thought that the pipe had corroded from the outside, suggesting that a leaky connection at the top right had allowed sewage to drip down the right-hand side of the copper pipe and drip from the bottom, which explained why the left-hand half of the pipe appeared unscathed.

I agreed. The pipe is clearly made of copper, and blue colours are characteristic of hydrated copper salts. Inside the pipe, the flow of water would wash any solution anyway before corrosion could occur, but on the outside, drips could sit on the surface for long periods of time. There’d be plenty of time for even a slow reaction to occur, and then for water to slowly evaporate, allowing the growth of spectacular crystals.

Hydrated copper(II) sulfate crystals are bright blue. (Image from Wikimedia Commons)

But what exactly where they? There were several theories, but for me the interesting thing was the colour. Hydrated copper(II) sulfate crystals are bright blue. The colour arises due to an effect called d orbital splitting, which is a tad complicated but, in short, means that complex absorbs light from the red end of the visible light spectrum, allowing all the other colours of light to pass through. As a result, our eyes “see” blue.

But these crystals, assuming it’s not a photographic effect, had a purplish hue. At least, some of them do. So… not copper sulfate, or not entirely copper sulfate (given the situation, a mixture seemed entirely likely). Which begs the question, which copper complex produces a purple colour?

A little bit of Googling and I was pretty sure I’d identified it: copper azurite, Cu₃(CO₃)₂(OH)₂. This fit for two reasons: firstly, it’s a mineral that could (does) readily form in the presence of water and air (which, of course, contains carbon dioxide), and secondly it’s exactly the right colour.

Many will recognise the word “azure” as being associated with the deep, rich blue of a summer sky, and in fact the English name of this mineral comes from the same word-root: the Persian lazhward, a place known for its deposits of another deep-blue stone, lapis lazuli (meaning “stone of azure”).

Blue-purple copper azurite and green malachite (image from Wikipedia)

Azurite is often found with malachite, the better-known green copper mineral that we recognise from copper roofs and statues. Malachite is sometimes simplistically described as copper carbonate, implying CuCO₃, but in truth it’s Cu₂CO₃(OH)₂ pure copper(II) carbonate doesn’t form in nature.

You can see malachite co-existing with azurite in the photo on the right. The azurite will, over time, tend to morph into malachite when the level of carbon dioxide in the air is relatively low, as in ‘normal’ air—which explains why we don’t usually see purple ‘copper’ roofs—but the carbon dioxide levels were probably higher in that cupboard. There was almost certainly acidic sewage reacting with carbonate, combined with a lack of ventilation, so it makes sense that we might see more azurite.

Azurite has an interesting history as a pigment. Historically blue colours were rare and expensive—associated with royalty and divinity—which is one reason why the Virgin Mary was often depicted wearing blue in paintings. Azurite was used to make blue pigments, but (as I mentioned above) it’s unstable, tending to turn greenish over time, or black if heated. Ultramarine blue (made from lapis lazuli) is more stable, particularly when heated, but it was even more expensive. A lot of blue pigments in medieval paintings have been misidentified as coming from lapis lazuli, when in fact they were azurite—a more common mineral in Europe at the time.

There’s a fun piece of etymology here, too. Copper, of course, has been valuable metal since, well, the Bronze Age. The presence of purple azurite and green malachite are surface indicators of copper sulfide ores, useful for smelting. This lead to the name of the element nickel, because an ore of nickel weathers to produce a green mineral that looks a little like malachite. And this, in turn, lead to attempts to smelt it in the belief that it was copper ore. But, since it wasn’t, the attempts to produce copper failed (a much higher smelting temperature is needed to produce nickel).

The mineral nickeline can resemble malachite, and was dubbed kupfernickel in Germany, literally “copper demon”

As a result, the mineral, nickeline, was dubbed kupfernickel in Germany, literally “copper demon”. When the Swedish alchemist Baron Axel Fredrik Cronstedt succeeded, in 1751, in smelting kupfernickel to produce a previously unknown silvery-white, iron-like metal he named it after the nickel part of kupfernickel.

And this is how we go from a corroded pipe to sky-blue colours to medieval paintings to copper demons to nickel. But what happened to the pipe in the original tweet? Well, in an update, Caroline Hedge told us that it had been removed and disposed of, and so we’ll never be completely sure what the pretty crystals were, but they certainly lead to an interestingly twisty-turny chemistry story.


Like the Chronicle Flask’s Facebook page for regular updates, or follow @chronicleflask on Twitter. Content is © Kat Day 2020. You may share or link to anything here, but you must reference this site if you do. If you enjoy reading my blog, please consider buying me a coffee through Ko-fi using the button below.
Buy Me a Coffee at ko-fi.com

The Chronicles of the Chronicle Flask: 2019

Happy New Year, everyone! Usually, I write this post in December but somehow things have got away from me this year, and I find myself in January. Oops. It’s still early enough in the month to get away with a 2019 round-up, isn’t it? I’m sure it is.

It was a fun year, actually. I wrote several posts with International Year of the Periodic table themes, managed to highlight the tragically-overlooked Elizabeth Fulhame, squeezed in something light-hearted about the U.K.’s weird use of metric and imperial units and discovered the recipe for synthetic poo. Enjoy!

Newland’s early table of the elements

January started with a reminder that 2019 had been officially declared The Year of the Periodic Table, marking 150 years since Dmitri Mendeleev discovered the “Periodic System”. The post included a quick summary of his work, and of course mentioned the last four elements to be officially named: nihonium (113), moscovium (115), tennessine (117) and oganesson (118). Yes, despite what oh-so-many periodic tables still in widespread use suggest (sort it out in 2020, exam boards, please), period 7 is complete, all the elements have been confirmed, and they all have ‘proper’ names.

February featured a post about ruthenium. Its atomic number being not at all significant (there might be a post about rhodium in 2020 😉). Ruthenium and its compounds have lots of uses, including cancer treatments, catalysis, and exposing latent fingerprints in forensic investigations.

March‘s entry was all about a little-known female chemist called Elisabeth Fulhame. She only discovered catalysis. Hardly a significant contribution to the subject. You can’t really blame all those (cough, largely male, cough) chemists for entirely ignoring her work and giving the credit to Berzelius. Ridiculous to even suggest it.

An atom of Mendeleevium, atomic number 101

April summarised the results of the Element Tales Twitter game started by Mark Lorch, in which chemists all over Twitter tried to connect all the elements in one, long chain. It was great fun, and threw up some fascinating element facts and stories. One of my favourites was Mark telling us that when he cleared out his Grandpa’s flat he discovered half a kilogram of sodium metal as well as potassium cyanide and concentrated hydrochloric acid. Fortunately, he managed to stop his family throwing it all down the sink (phew).

May‘s post was written with the help of the lovely Kit Chapman, and was a little trot through the discoveries of five elements: carbon, zinc, helium, francium and tennessine, making the point that elements are never truly discovered by a single person, no matter what the internet (and indeed, books) might tell you.

In June I wrote about something that had been bothering me a while: the concept of describing processes as “chemical” and “physical” changes. It still bothers me. The arguments continue…

In July I came across a linden tree in a local park, and it smelled absolutely delightful. So I wrote about it. Turns out, the flowers contain one of my all-time favourite chemicals (at least in terms of smell): benzaldehyde. As always, natural substances are stuffed full of chemicals, and anyone suggesting otherwise is at best misinformed, at worst outright lying.

Britain loves inches.

In August I wrote about the UK’s unlikely system of units, explaining (for a given value of “explaining”) our weird mishmash of metric and imperial units. As I said to a confused American just the other day, the UK is not on the metric system. The UK occasionally brushes fingers with the metric system, and then immediately denies that it wants anything to do with that sort of thing, thank you very much. This was my favourite post of the year and was in no way inspired by my obsession with the TV adaptation of Good Omens (it was).

In September I returned to one of my favourite targets: quackery. This time it was amber teething necklaces. These are supposed to work (hmm) by releasing succinic acid from the amber beads into the baby’s skin where it… soothes the baby by… some unexplained mechanism. They don’t work and they’re a genuine choking hazard. Don’t waste your money.

October featured a post explaining why refilling plastic bottles might not be quite as simple as you thought. Sure, we all need to cut down on plastic use, but there are good reasons why shops have rules about what you can, and can’t, refill and they’re not to do with selling more bottles.

November continued the environmental theme with a post was all about some new research into super-slippery coatings that might be applied to all sorts of surfaces, not least ceramic toilet bowls, with the goal of saving some of the water that’s currently used to rinse and clean such surfaces. The best bit about this was that I discovered that synthetic poo is a thing, and that the recipe includes miso. Yummy.

Which brings us to… December, in which I described some simple, minimal-equipment electrolysis experiments that Louise Herbert from STEM Learning had tested out during some teaching training exercises. Got a tic tac box, some drawing pins and a 9V battery? Give it a go!

Well, there we have it. That’s 2019 done and dusted. It’s been fun! I wonder what sort of health scares will turn up for “guilty January”? Won’t be long now…


Like the Chronicle Flask’s Facebook page for regular updates, or follow @chronicleflask on Twitter. Content is © Kat Day 2020. You may share or link to anything here, but you must reference this site if you do. If you enjoy reading my blog, please consider buying me a coffee through Ko-fi using the button below.
Buy Me a Coffee at ko-fi.com