When I tell people that I’m a chemist, I often get an “oooh, I was really bad at that at school” type response. It’s surprising the number of people that think chemistry has nothing whatsoever to do with their daily lives. Memorably, one acquaintance of an acquaintance (I wouldn’t go so far as to say friend of a friend) once even proclaimed, quite proudly, that the whole of science had nothing to do with her, and she lived her life entirely without it. I was so gobsmacked I didn’t really know where to start, and trust me, that doesn’t happen often.
So with that in mind, here are five bits of chemistry you do every day. Or at least regularly. You’re a chemist and you didn’t know it!
1. Wash your hands.
Well, we all hope you do this one every day anyway. Soap is very clever stuff. It’s one of the oldest bits of chemistry there is, going back thousands of years, when people first discovered that if they washed their pots with the ashes of cooking fires they got a better result. Soap is made by a process called saponification, where fats are mixed with strong alkalis (traditionally lye: sodium or potassium hydroxide). The fats break apart and form fatty acid salts. What’s clever about those, is that they have a water-loving end (the salt bit) and a water-hating end (the fatty acid bit). So they can grab onto both, and hold the water and oil together. That’s what you do every time you use soap: the dirt ingrained in oil on your skin (nice) can, with the help of those lovely soap molecules, mix with water and so be washed away. Brilliant!
2. Drink a pH indicator.
‘What’ I hear you cry, ‘I do no such thing!’ Ah but do you drink tea (the black kind)? If so, then you do, even if you’ve never noticed. Have you ever put lemon in your tea instead of milk? If not, and you have tea and lemon juice (bottled is fine) in your house, go and try it now. The colour change is really quite lovely to watch. Lemon juice is a source of ascorbic and citric acids, and has a pH of roughly 2-3. You’ll see the same effect with vinegar too, although that mixture wouldn’t be quite so nice to drink. (If you’re feeling adventurous, try some common alkalis such as baking soda or bleach, but DEFINITELY don’t drink those concoctions afterwards…)
3. Carry out combustion.
Ever lit a match? Or a lighter? Started your gas cooker? Turned on your gas boiler? Started your petrol or diesel car? Of course you have. Every single time you do any of those things, the carbon atoms in their molecules are reacting with oxygen to produce carbon dioxide and water. And even if you live under a damp and fireless rock, you’re still doing it – respiration, the process by which all your cells obtain energy – is a form of combustion.
4. Watch some ice float.
Ice floats. Stop press!
We take that for granted, but it’s amazing really. This is a brilliant bit of chemistry that has its tendrils in physics and biology too. Solids don’t generally float on their liquids. Solids are usually more dense than their liquid form, so they sink. But if water behaved like that we wouldn’t have life on this planet, because every time any body of water got really cold it would freeze from the bottom up, taking out all the life swimming in its depths in the process. Since we’re fairly sure that life began in the oceans, evolution would have come to a full stop. But water doesn’t behave like that; water expands when it freezes. Why? Because water has something called hydrogen bonds between its molecules, and as it solidifies these bonds increasingly force the crystalline structure to be very ‘open’. As a result, ice is actually less dense than water, so it floats. This is also why ice is so brilliant at cooling liquids; the warm stuff rises, hits the cold ice and sinks again, creating a sort of cycle called a convection current. Who knew there was so much sciency stuff in your spritzer?
5. Bake a cake.
Food is a rich source of chemistry, just ask Heston. In this case, I’m thinking of baking soda, otherwise known as sodium hydrogencarbonate, or sodium bicarbonate (NaHCO3). When it’s heated above about 70 oC it undergoes a chemical reaction called decomposition. In other words, its molecules break apart without actually needing to react with any other substance. When you put baking soda into your recipe, or use ‘self-raising’ flour (which has it already added), you’re setting it up for this chemical reaction. As the cake cooks, the mixture heats up, and the baking soda does this:
2NaHCO3 –> CO2 + H2O + Na2CO3
The carbon dioxide, CO2, is a gas and it pushes your mixture up and out, causing it to rise. No baking soda chemistry, no lovely, fluffy cake.
So, next time someone tells you they’re rubbish at chemistry, you can point out that they’re doing it every day!